Salta al contenuto principale
Passa alla visualizzazione normale.

SILVIO BUSCEMI

Human epicardial adipose tissue expresses glucose-dependent insulinotropic polypeptide, glucagon, and glucagon-like peptide-1 receptors as potential targets of pleiotropic therapies

  • Autori: Malavazos A.E.; Iacobellis G.; Dozio E.; Basilico S.; Di Vincenzo A.; Dubini C.; Menicanti L.; Vianello E.; Meregalli C.; Ruocco C.; Ragni M.; Secchi F.; Spagnolo P.; Castelvecchio S.; Morricone L.; Buscemi S.; Giordano A.; Goldberger J.J.; Carruba M.; Cinti S.; Romanelli M.M.C.; Nisoli E.
  • Anno di pubblicazione: 2023
  • Tipologia: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/603914

Abstract

Lay Summary Human epicardial adipose tissue (EAT) is a unique and multifunctional fat compartment of the heart. Microscopically, EAT is composed of adipocytes, nerve tissues, inflammatory, stromovascular, and immune cells. Epicardial adipose tissue is a white adipose tissue, albeit it also has brown fat-like or beige fat-like features. No muscle fascia divides EAT and myocardium; this allows a direct interaction and crosstalk between the epicardial fat and the myocardium. Due to its distinctive transcriptome and functional proximity to the heart, EAT can play a key role in the development and progression of coronary artery disease, atrial fibrillation, and heart failure. Clinically, EAT, given its rapid metabolism and simple measurability, can be considered a novel therapeutic target, owing to its responsiveness to drugs with pleiotropic and clear beneficial cardiovascular effects such as the glucagon-like peptide-1 receptor (GLP-1R) agonists.Human EAT is found to express the genes encoding the receptors of glucose-dependent insulinotropic polypeptide receptor (GIPR), glucagon receptor (GCGR), and GLP-1. The immunohistochemistry indicates that GIP and GCG receptor proteins are present in EAT samples. Epicardial adipose tissue GIPR is inversely associated with genes involved in free fatty acid (FFA) oxidation and transport and with genes promoting FFA biosynthesis and adipogenesis. Epicardial adipose tissue GCGR is correlated with genes promoting FFA transport and activation for mitochondrial beta-oxidation and white-to-brown adipocyte differentiation and with genes reducing FFA biosynthesis and adipogenesis.As the myocardium relies mostly on FFAs as fuel and is in direct contiguity with EAT, these findings may have a great importance for the modulation of the myocardial activity and performance. Given the emerging use and cardiovascular effects of GLP-1R agonists, dual GIPR/GLP-1R agonists, and GLP-1R/GIPR/GCGR triagonists, we believe that pharmacologically targeting and potentially modulating organ-specific fat depots through G-protein-coupled receptors may produce beneficial cardiovascular and metabolic effects.Aims Human epicardial adipose tissue (EAT) plays a crucial role in the development and progression of coronary artery disease, atrial fibrillation, and heart failure. Microscopically, EAT is composed of adipocytes, nerve tissues, inflammatory, stromovascular, and immune cells. Epicardial adipose tissue is a white adipose tissue, albeit it also has brown fat-like or beige fat-like features. No muscle fascia divides EAT and myocardium; this allows a direct interaction and crosstalk between the epicardial fat and the myocardium. Thus, it might be a therapeutic target for pharmaceutical compounds acting on G-protein-coupled receptors, such as those for glucose-dependent insulinotropic polypeptide (GIP), glucagon (GCG), and glucagon-like peptide-1 (GLP-1), whose selective stimulation with innovative drugs has demonstrated beneficial cardiovascular effects. The precise mechanism of these novel drugs and their tissue and cellular target(s) need to be better understood. We evaluate whether human EAT expresses GIP, GCG, and GLP-1 receptors and whether their presence is related to EAT transcriptome. We also investigated protein expression and cell-type localization specifically for GIP receptor (GIPR) and glucagon receptor (GCGR). Methods and results Epicardial adipose tissue samples were collected from 33 patients affected by cardiovascular diseases undergoing open heart surgery (90.9% males, age 67.2 +/- 10.5 years mean +/- SD). Microarray and immunohistochemistry analyses were performed. Microarray analysis showed that GIPR and GCGR messenger ribonucleic acids (mRNAs) are expressed in EAT, beyond confirming the previously found GLP-1 [3776 +/- 1377 arbitrary unit (A.U.), 17.77 +/- 14.91 A.U., and 3.41 +/- 2.27 A.U., respectively]. The immunohistochemical analysis consistently indicates that GIPR and GCGR are expressed in EAT