Salta al contenuto principale
Passa alla visualizzazione normale.

LUCA UGAGLIA

On base loci of higher fundamental forms of toric varieties

Abstract

We study the base locus of the higher fundamental forms of a projective toric variety X at a general point. More precisely we consider the closure X of the image of a map (C*)k→Pn, sending t to the vector of Laurent monomials with exponents p0,…,pn∈Zk. We prove that the m-th fundamental form of such an X at a general point has non empty base locus if and only if the points pi lie on a suitable degree-m affine hypersurface. We then restrict to the case in which the points pi are all the lattice points of a lattice polytope and we give some applications of the above result. In particular we provide a classification for the second fundamental forms on toric surfaces, and we also give some new examples of weighted 3-dimensional projective spaces whose blowing up at a general point is not Mori dream.