Salta al contenuto principale
Passa alla visualizzazione normale.

FRANCESCA RAPPA

The Mechanism and Potential Therapeutic Effects of Cyclosporin, Cyclophilin, Probiotics and Syndecan-1 in an Animal Model of Inflammatory Bowel Disease

  • Autori: Dosh L.; Rappa F.; Jurjus A.; Karam G.; Lezeik R.; El Masri J.; Bucchieri F.; Leone A.; Jurjus R.
  • Anno di pubblicazione: 2024
  • Tipologia: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/622954

Abstract

Background: Inflammatory bowel diseases (IBDs) have several treatment modalities including immunoregulators, like cyclosporine A, an immunosuppressant that interacts with cytoplasmic cyclophilin A, and probiotics. Aims: This study explored and compared the possible role of syndecan-1 in the IBD pathogenic process as well as the effectiveness of cyclophilin A, cyclosporine A, and their combination in the management of IBDs in the presence of probiotics. Methodology: IBD was induced in a total of 112 mice equally divided between syndecan-1 knock-out (KO) and Balb/c wild-type mice, using 2% dextran sulfate sodium (DSS) followed by intraperitoneal treatment with cyclosporine A, cyclophilin A, or a combination of both. In addition, a daily dose of probiotics was given in their drinking water. The animals were monitored for clinical signs and symptoms and checked for gross pathologies in the abdomen after 3 weeks. Descending and sigmoid colon biopsies were collected and fixed for routine microscopy or frozen for protein extraction and molecular testing for IL-6, CD3, CD147, and beta 1 integrins as well as pAkt expression. Results: The data showed that the induction of IBD in the syndecan-1 KO mice was more severe at the clinical, histological, and molecular levels than in the wild type. The combined CypA-CyA treatment showed no added inhibitory effect compared to single-drug treatment in both strains. Probiotics added to the combination was more effective in the wild type and, when used alone, its inhibition of IL-6 was the highest. As for the CD147 marker, there were more suppressions across the various groups in the KO mice except for the probiotics-alone group. Concerning CD3, it was significantly increased by the CypA-CyA complex, which led to more inflammation in the KO mice. Probiotics had little effect with the combination. In relation to beta 1 integrins, the CypA-CyA combination made no significant difference from CyA alone, and adding probiotics to the combination resulted in higher beta 1 integrin expression in the KO mice. As for pAkt, it was very well expressed and upregulated in both strains treated with DSS, but the effect was much larger in the KO mice. In brief, the CypA-CyA complex showed a decrease in the expression of pAkt, but there was no added effect of both drugs. Probiotics along with the complex had a similar reduction effects in both strains, with a greater effect in the wild-type mice, while probiotics alone led to a similar reduction in pAkt expressions in both strains. Conclusions: The differential effects of CyA, CypA, probiotics, and their combinations on the various inflammatory markers, as well as the histological alterations and clinical signs and symptoms, speak in favor of a clear role of syndecan-1 in reducing inflammation. However, probiotics need to be considered after more explorations into the mechanisms involved in the presence of CypA and CyA especially since pAkt is less active in their presence.