Salta al contenuto principale
Passa alla visualizzazione normale.

ANTONIO PIACENTINO

A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island

  • Autori: Calise F; Macaluso A; Piacentino A; Vanoli L
  • Anno di pubblicazione: 2017
  • Tipologia: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/280506

Abstract

In this paper a thermoeconomic analysis of a novel hybrid Renewable Polygeneration System connected to a district heating and cooling network is presented. The plant is powered simultaneously by solar and geothermal sources, producing electricity, desalinated water, heat and cooling energy. System layout includes Parabolic Through Collector (PTC) field, geothermal wells, Organic Rankine Cycle (ORC) unit and a Multi-Effect Desalination (MED) system. Cooling and thermal demands are calculated by suitable building dynamic simulation models, calibrated for Pantelleria Island. Electrical demand is obtained by measured data. A detailed control strategy has been implemented in order to prevent any heat dissipation, to match the appropriate operating temperature levels in each component, to avoid a too low temperature of geothermal fluid reinjected in the wells and to manage the priority of space heating and cooling process. A 1-year dynamic simulation has been performed and results analyzed on daily, monthly and yearly basis. The system achieved an SPB equal to 8.50 and it resulted capable to cover the energy demands of a small community. Moreover, the plant is capable to cover the fresh water demand of the Pantelleria Island.