Salta al contenuto principale
Passa alla visualizzazione normale.

GIUSEPPE LO RE

Autonomic behaviors in an Ambient Intelligence system

  • Autori: DE PAOLA, A.; Ferraro, P.; Gaglio, S.; LO RE, G.
  • Anno di pubblicazione: 2015
  • Tipologia: Proceedings (TIPOLOGIA NON ATTIVA)
  • OA Link: http://hdl.handle.net/10447/129365

Abstract

Ambient Intelligence (AmI) systems are constantly evolving and becoming ever more complex, so it is increasingly difficult to design and develop them successfully. Moreover, because of the complexity of an AmI system as a whole, it is not always easy for developers to predict its behavior in the event of unforeseen circumstances. A possible solution to this problem might lie in delegating certain decisions to the machines themselves, making them more autonomous and able to self-configure and self-manage, in line with the paradigm of Autonomic Computing. In this regard, many researchers have emphasized the importance of adaptability in building agents that are suitable to operate in real-world environments, which are characterized by a high degree of uncertainty. In the light of these considerations, we propose a multi-tier architecture for an autonomic AmI system capable of analyzing itself and its monitoring processes, and consequently of managing and reconfiguring its own sub-modules to better satisfy users' needs. To achieve such a degree of autonomy and self-awareness, our AmI system exploits the knowledge contained in an ontology that formally describes the environment it operates in, as well as the structure of the system itself.