Changes in neural drive to calf muscles during steady submaximal contractions after repeated static stretches
- Autori: Mazzo, Melissa R; Weinman, Logan E; Giustino, Valerio; Mclagan, Bailey; Maldonado, John; Enoka, Roger M
- Anno di pubblicazione: 2021
- Tipologia: Articolo in rivista
- Parole Chiave: motor unit; neural drive; stretch
- OA Link: http://hdl.handle.net/10447/579408
Abstract
Key points: Repeated static-stretching interventions consistently increase the range of motion about a joint and decrease total joint stiffness, but findings on the changes in muscle and connective-tissue properties are mixed. The influence of these stretch-induced changes on muscle function at submaximal forces is unknown. To address this gap in knowledge, the changes in neural drive to the plantar flexor muscles after a static-stretch intervention were estimated. Neural drive to the plantar flexor muscles during a low-force contraction increased after repeated static stretches. These findings suggest that adjustments in motor unit activity are necessary at low forces to accommodate reductions in the force-generating and transmission capabilities of the muscle-tendon unit after repeated static stretches of the calf muscles. Abstract: Static stretching decreases stiffness about a joint, but its influence on muscle-tendon unit function and muscle activation is unclear. We investigated the influence of three static stretches on changes in neural drive to the plantar flexor muscles, both after a stretch intervention and after a set of maximal voluntary contractions (MVCs). Estimates of neural drive were obtained during submaximal isometric contractions by decomposing high-density electromyographic signals into the activity of individual motor units from medial gastrocnemius, lateral gastrocnemius and soleus. Motor units were matched across contractions and an estimate of neural drive to the plantar flexors was calculated by normalizing the cumulative spike train to the number of active motor units (normalized neural drive). Mean discharge rate increased after the stretch intervention during the 10% MVC task for all recorded motor units and those matched across conditions (all, P = 0.0046; matched only, P = 0.002), recruitment threshold decreased for motor units matched across contractions (P = 0.022), and discharge rate at recruitment was elevated (P = 0.004). Similarly, the estimate of normalized neural drive was significantly greater after the stretch intervention at 10% MVC torque (P = 0.029), but not at 35% MVC torque. The adjustments in motor unit activity required to complete the 10% MVC task after stretch may have been partially attenuated by a set of plantar flexor MVCs. The increase in neural drive required to produce low plantar-flexion torques after repeated static stretches of the calf muscles suggests stretch-induced changes in muscle and connective tissue properties.