Salta al contenuto principale
Passa alla visualizzazione normale.

ALESSIO FERRARI

Long-term performance and life cycle assessment of energy piles in three different climatic conditions

  • Autori: Sutman M.; Speranza G.; Ferrari A.; Larrey-Lassalle P.; Laloui L.
  • Anno di pubblicazione: 2020
  • Tipologia: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/577230

Abstract

The main purpose behind the use of energy piles is to enable the exploitation of geothermal energy for meeting the heating/cooling demands of buildings in an efficient and environment-friendly manner. However, the long-term performance of energy piles in different climatic conditions, along with their actual environmental impacts, has not been fully assessed. In this paper, the results of a finite element model taking into consideration the heating and cooling demands of a reference building, and the intermittent operation of a ground source heat pump, are revealed to examine the long-term performance of energy piles. Furthermore, a life cycle assessment model is implemented to compare the environmental performance of energy piles and a group of conventional piles. The environmental enhancement provided by the adoption of a ground source heat pump system is quantified with respect to a conventional heating and cooling system. The obtained results show that (i) the energy pile system can meet the majority of the heating/cooling demands, except during the peak demands, (ii) the geothermal operation results in temperature fluctuations within the energy piles and the soil, (iii) the use of energy piles results in a significant reduction in environmental impacts in the majority of the examined cases.