On the spectrum of supercyclic/hypercyclic operators
- Autori: Aiena P.; Burderi F.; Triolo S.
- Anno di pubblicazione: 2025
- Tipologia: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/680745
Abstract
This paper concerns the spectral structure of hypercyclic and supercyclic operators defined on Banach spaces, or defined on Hilbert spaces. We also consider the spectral properties of operators in Hilbert spaces that commute with a hypercyclic operator. A result of Herrero and Kitai (Proc Am Math Soc 116(3):873-875, 1992) is extended to Drazin invertible operators. In particular, a Drazin invertible operator is hypercyclic if and only if is invertible. An analogous result holds for supercyclic operators T in the case were the dual T & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T<^>*$$\end{document} has empty point spectrum.