Salta al contenuto principale
Passa alla visualizzazione normale.

GIORGIO STASSI

IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins

  • Autori: Conticello, C.; Pedini, F.; Zeuner, A.; Patti, M.; Zerilli, M.; Stassi, G.; Messina, A.; Peschle, C.; De Maria, R.
  • Anno di pubblicazione: 2004
  • Tipologia: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/59744

Abstract

We recently proposed that Th1 and Th2 cytokines exert opposite effects on the pathogenesis and clinical outcome of organ-specific autoimmunity by altering the expression of genes involved in target cell survival. Because a Th2 response against tumors is associated with poor prognosis, we investigated the ability of IL-4 to protect tumor cells from death receptor- and chemotherapy-induced apoptosis. We found that IL-4 treatment significantly reduced CD95 (Fas/APO-1)- and chemotherapeutic drug-induced apoptosis in prostate, breast, and bladder tumor cell lines. Analysis of antiapoptotic protein expression revealed that IL-4 stimulation resulted in up-regulation of cellular (c) FLIP/FLAME-1 and Bcl-x(L). Exogenous expression of cFLIP/FLAME-1 inhibited apoptosis induced by CD95 and to a lesser extent by chemotherapy, while tumor cells transduced with Bcl-x(L) were substantially protected both from CD95 and chemotherapeutic drug stimulation. Moreover, consistent IL-4 production and high expression of both cFLIP/FLAME-1 and Bcl-x(L) were observed in primary prostate, breast, and bladder cancer in vivo. Finally, primary breast cancer cells acquired sensitivity to apoptosis in vitro only in the absence of IL-4. Thus, IL-4 protects tumor cells from CD95- and chemotherapy-induced apoptosis through the up-regulation of antiapoptotic proteins such as cFLIP/FLAME-1 and Bcl-x(L). These findings may provide useful information for the development of therapeutic strategies aimed at restoring the functionality of apoptotic pathways in tumor cells.