Curriculum and Research

Subjects
Academic Year | Subject identification code | Subject name | ECTS | Course of study |
---|---|---|---|---|
2023/2024 | 19109 | ANALISI MATEMATICA C.I. | 12 | INGEGNERIA ELETTRICA PER LA E-MOBILITY |
2023/2024 | 19109 | ANALISI MATEMATICA C.I. | 12 | INGEGNERIA ELETTRONICA |
2023/2024 | 20564 | MODULO ANALISI MATEMATICA 1 (MODULO) | 6 | INGEGNERIA ELETTRICA PER LA E-MOBILITY |
2023/2024 | 20564 | MODULO ANALISI MATEMATICA 1 (MODULO) | 6 | INGEGNERIA ELETTRONICA |
2023/2024 | 20565 | MODULO ANALISI MATEMATICA 2 (MODULO) | 6 | INGEGNERIA ELETTRICA PER LA E-MOBILITY |
2023/2024 | 20565 | MODULO ANALISI MATEMATICA 2 (MODULO) | 6 | INGEGNERIA ELETTRONICA |
Publications
Date | Title | Type | Record |
---|---|---|---|
2023 | Higher integrability and stability of (p,q)-quasiminimizers | Articolo in rivista | Go to |
2022 | Neumann p-Laplacian problems with a reaction term on metric spaces | Articolo in rivista | Go to |
2021 | Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition | Articolo in rivista | Go to |
2021 | On (p(x), q(x))-Laplace equations in R^N without Ambrosetti-Rabinowitz condition | Articolo in rivista | Go to |
2021 | Regularity properties for quasiminimizers of a (p, q)-Dirichlet integral | Articolo in rivista | Go to |
2020 | Weak Solutions for a (p(z), q(z))-Laplacian Dirichlet Problem | Articolo in rivista | Go to |
2019 | A note on homoclinic solutions of (p,q)-Laplacian difference equations | Articolo in rivista | Go to |
2019 | Weak solution for Neumann (p,q)-Laplacian problem on Riemannian manifold | Articolo in rivista | Go to |