Valorization of Blue Crab (Callinectes sapidus) By-Products into Antioxidant Protein Hydrolysates for Nutraceutical Applications
- Autori: Arena, R.; Manuguerra, S.; Gonzalez, M.M.; Petrosillo, E.; Lanzoni, D.; Poulain, C.; Debeaufort, F.; Giromini, C.; Francesca, N.; Messina, C.M.; Santulli, A.
- Anno di pubblicazione: 2025
- Tipologia: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/691939
Abstract
The Atlantic blue crab (Callinectes sapidus) is an opportunistic invasive species in the Mediterranean that is negatively affecting biodiversity, fisheries, and tourism. In Italy, it is appreciated for its good meat quality, but the processing yield is low (21.87 ± 2.38%), generating a significant amount of by-products (72.45 ± 4.08%), which are underutilized. Valorizing this biomass is in line with circular economy principles and can improve both environmental and economic sustainability. This study aimed to valorize Atlantic blue crab by-products (BCBP), producing protein hydrolysates and assessing their in vitro bioactivities, in order to plan applications in animal food and related sectors. BCBP hydrolysates were obtained by enzymatic hydrolysis using Alcalase and Protamex enzymes. The treatment with Alcalase resulted in a higher degree of hydrolysis (DH = 23% in 205 min) compared to Protamex (DH = 14% in 175 min). Antioxidant activity of the hydrolisates was evaluated through DPPH, ABTS, reducing power and FRAP assays, as well as in vitro test in fibroblasts (HS-68). At 10 mg/mL, hydrolysates from both enzymes exhibited the maximum radical scavenging activity in DPPH and ABTS assays. In HS-68 cells, 0.5 mg/mL hydrolysates protected against H2O2-induced oxidative stress, showing a cell viability comparable to cells treated with 0.5 mM N-acetyl cysteine (NAC), as an antioxidant. Statistical analyses were performed using one-way ANOVA followed by Student–Newman–Keuls (SNK) or Games–Howell post hoc tests, with significance set at p < 0.05. Overall, both enzymes efficiently hydrolyzed BCBP proteins, generating hydrolysates with significant antioxidant activity and cytoprotective effects. These results demonstrate the potential to produce high-quality bioactive compounds from BCBPs, suitable for food, nutraceutical, and health applications. Scaling up this valorization process represents a viable strategy to improve sustainability and add economic value to the management of this invasive species, turning a problem in a resource.
