Salta al contenuto principale
Passa alla visualizzazione normale.

SERENA INDELICATO

Gellan gum-dopamine mediated in situ synthesis of silver nanoparticles and development of nano/micro-composite injectable hydrogel with antimicrobial activity

  • Autori: Giuseppina Biscari, Michael Malkoch, Calogero Fiorica, Yanmiao Fan, Fabio Salvatore Palumbo, Serena Indelicato, David Bongiorno, Giovanna Pitarresi
  • Anno di pubblicazione: 2024
  • Tipologia: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/625874

Abstract

Infected skin wounds represent a serious health threat due to the long healing process and the risk of colonization by multi-drug-resistant bacteria. Silver nanoparticles (AgNPs) have shown broad-spectrum antimicrobial activity. This study introduces a novel approach to address the challenge of infected skin wounds by employing gellan gum-dopamine (GG-DA) as a dual-functional agent, serving both as a reducing and capping agent, for the in situ green synthesis of silver nanoparticles. Unlike previous methods, this work utilizes a spray-drying technique to convert the dispersion of GG-DA and AgNPs into microparticles, resulting in nano-into-micro systems (AgNPs-MPs). The microparticles, with an average size of approximately 3 μm, embed AgNPs with a 13 nm average diameter. Furthermore, the study explores the antibacterial efficacy of these AgNPs-MPs directly and in combination with other materials against gram-positive and gram-negative bacteria. The versatility of the antimicrobial material is showcased by incorporating the microparticles into injectable hydrogels. These hydrogels, based on oxidized Xanthan Gum (XGox) and a hyperbranched synthetic polymer (HB10K-G5-alanine), are designed with injectability and self-healing properties through Shiff base formation. The resulting nano-into-micro-into-macro hybrid hydrogel emerges as a promising biomedical solution, highlighting the multifaceted potential of this innovative approach in wound care and infection management.