Salta al contenuto principale
Passa alla visualizzazione normale.

GIUSEPPE DOMENICO ARRABITO

High-density ZnO nanowires for cellular biointerfaces: a new role as myogenic differentiation switch

  • Autori: Vito Errico, Giuseppe Arrabito, Ersilia Fornetti, Claudia Fuoco, StefanoTesta, Giovanni Saggio, Stefano Rufini, Stefano Cannata, Alessandro Desideri, Christian Falconi, Cesare Gargioli
  • Anno di pubblicazione: 2019
  • Tipologia: Abstract in atti di convegno pubblicato in volume
  • OA Link: http://hdl.handle.net/10447/378490

Abstract

The design of artificial platforms for expanding undifferentiated stem cells is of tremendous importance for regenerative medicine [1]. We have recently demonstrated that a ZnO nanowires (NWs) decorated glass support permits to obtain a differentiation switch during proliferation for mesoangioblasts (MABs)– i.e. multipotent progenitor cells which are remarkable candidates for the therapy of muscle diseases [2]. We have optimized the ZnO NWs synthesis on glass surfaces by numerical simulations and experimental systematic investigations, considering zinc speciation and supersaturation [3]. In particular, we demonstrated by numerical simulations that the ligand ethylenediamine, at the isoelectric point of the ZnO NWs tips, can effectively control – at 1:1 stoichiometric ratio with zinc – both speciation and supersaturation of zinc in the nutrient solution. In this regard, we employed ethanolamine (a safer precursor) for in-situ producing ethylenediamine by means of a zinc-catalysed amination reaction of ethanolamine by ammonia. The obtained highquality ZnONWs-cells biointerface allows cells to maintain viability and a spherical viable undifferentiated state during the 8 days observation time. Simulations of the interface by theoretical models [4] and our experimental investigations by SEM and confocal microscopy demonstrate that NWs do not induce any damage on the cellular membrane, whilst blocking their differentiation. More specifically, the myosin heavy chain, typically expressed in differentiated myogenic progenitors, is completely absent. Interestingly, the differentiation capabilities are completely restored upon cell removal from the NW-functionalized substrate and regrowing onto a standard culture glass dish. These results open the way towards unprecedented applications of ZnO NWs for cell-based therapy and tissue engineering [5]. References [1] G. Cossu, P. Bianco, Curr. Opin. Genet. Dev. 2003, 13, 537-542. [2] V. Errico, G. Arrabito, E. Fornetti, C. Fuoco, S. Testa, G. Saggio, S. Rufini, S. M. Cannata, A. Desideri, C. Falconi, C. Gargioli, ACS Appl. Mater. Interfaces, 2018, 10, 14097- 14107. [3] G. Arrabito, V. Errico, Z. Zhang, W. Han, C. Falconi, Nano Energy, 2018, 46, 54-62. [4] N. Buch-Månson, S. Bonde, J. Bolinsson, T. Berthing, J. Nygård, K.L. Martinez, Adv. Funct. Mater. 2015, 25, 3246-3255. [5] Y. Su, I. Cockerill, Y. Wang, Y.-X. Qin, L. Chang, Y. Zheng, and D. Zhu, Trends in Biotechnology, 2019, 37, 428-441.