Salta al contenuto principale
Passa alla visualizzazione normale.

MARCO ELIO TABACCHI

Ontology Aggregation with Maximum Consensus Based on a Fuzzy Multi-criteria Group Decision-Making Method

  • Autori: Castronovo, L.; Filippone, G.; Galici, M.; La Rosa, G.; Tabacchi, M.E.
  • Anno di pubblicazione: 2025
  • Tipologia: Contributo in atti di convegno pubblicato in volume
  • OA Link: http://hdl.handle.net/10447/686566

Abstract

In this work, we extend the integration of fuzzy logic in Multi-Criteria Group Decision-Making (MCGDM) problems and its application to ontologies. We define an MCGDM framework where experts assign scores and weights to ontology classes, and each one of them is assigned a fuzzy weight, reflecting their relative importance in the decision process. Each expert selects their best choice among the alternatives and a final best compromise A∗ is derived using a minimal mean distance operator, ensuring that the aggregated result optimally reflects expert opinions while minimizing deviations from individual preferences.