Salta al contenuto principale
Passa alla visualizzazione normale.

CARMELO MINEO

Evaluation of Coded Excitations for Autonomous Airborne Ultrasonic Inspection

  • Autori: Zhang D.; Watson R.; Dobie G.; MacLeod C.; Lines D.; Galbraith W.; Mineo C.; Pierce G.
  • Anno di pubblicazione: 2019
  • Tipologia: Contributo in atti di convegno pubblicato in volume
  • OA Link: http://hdl.handle.net/10447/425054

Abstract

Unmanned Aerial Vehicles (UAVs) are receiving increasing attention for use in Non-Destructive Testing due to their ability to access areas where manual inspection is not practical. Contact-based UAV ultrasonic inspections grant the opportunity to remotely monitor the structural health of an industrial asset with enhanced internal integrity information. Ultrasonic inspection is a Non-Destructive Testing (NDT) method conventionally used in corrosion mapping. Surface contacting ultrasonic transducers provide enhanced structural integrity information. However, due to near-surface aerodynamic effects, angular sensitivity of the ultrasound probe and alignment error during autonomous inspections, ultrasonic thickness measurements with low Signal-to-Noise Ratio (SNR) are common. Coded excitation consists of a series of binary bits, whereby the polarity of the voltage is varied following a set excitation sequence to produce desirable signal properties. Here, coded excitation is utilised to increase SNR and thereby reduce measurement uncertainty originating from non-ideal transducer alignment with asset surfaces during inspections. This paper evaluates the performance of two binary code sequences (8-bit Golay, 13-bit Barker) for use in autonomous airborne inspections.