Salta al contenuto principale
Passa alla visualizzazione normale.

DARIO TREPPIEDI

Unravelling the role of temperature for convective storms in Sicily

  • Autori: Patti, G.; Treppiedi, D.; Francipane, A.; Noto, L.
  • Anno di pubblicazione: 2025
  • Tipologia: Contributo in atti di convegno pubblicato in volume
  • OA Link: http://hdl.handle.net/10447/688258

Abstract

Convective precipitation events are frequently associated with the occurrence of lightning, which serves as an indicator of the electrical activity typically present in more intense thunderstorm systems. In this context, air temperature plays a crucial role in influencing the intensity of extreme precipitation. According to the Clausius–Clapeyron relationship, the air's capacity to hold water vapor increases by approximately 7% per degree Celsius of warming, suggesting that extreme precipitation events may intensify under climate change. Recent studies, such as the one by Molnar et al. (2015) conducted in Switzerland, have shown that precipitation intensities during lightning-associated storm events tend to increase at higher rates than those without lightning. However, the scaling rate observed in the presence of lightning strikes is lower than what is obtained considering all events together. Starting from this evidence, we questioned if these dynamics are also relevant for the Sicilian context, where other studies have verified the presence of CC scaling values tending towards super-CC (i.e., approximately 14%/°C), especially in areas particularly affected by convective phenomena induced by orographic uplift (Treppiedi et al., 2023, 2025).