Traditional Applications, Phytochemical Constituents, and Pharmacological Properties of Lavandula multifida L.: A Review
- Autori: Allouani, M.; Hendel, N.; Moutassem, D.; Sarri, M.; Sarri, D.; D'Anneo, A.; Gallo, G.; Palumbo Piccionello, A.
- Anno di pubblicazione: 2025
- Tipologia: Review essay (rassegna critica)
- OA Link: http://hdl.handle.net/10447/693491
Abstract
The genus Lavandula represents one of the most valuable aromatic and medicinal plants, holding significant economic importance in the pharmaceutical, food, perfumery, and cosmetics industries. Among them, L. multifida is a traditionally used medicinal plant in the Mediterranean region. This work provides a comprehensive review of L. multifida, focusing on its traditional uses, phytochemistry, and pharmacological properties. Unlike conventional lavenders, its essential oil is dominated by phenolic monoterpenes, principally carvacrol, alongside significant concentrations of β-bisabolene, 1,8-cineole, and camphor. This distinct phytochemical profile is further complemented by a rich range of non-volatile constituents, including flavonoids, phenolic acids, and triterpenoids. Pharmacological investigations have validated its broad-spectrum antimicrobial activity, demonstrating efficacy against multidrug-resistant bacterial strains and fungal pathogens through mechanisms such as membrane disruption, metabolic interference, and quorum sensing inhibition. Furthermore, the species exhibits significant antioxidant and anti-inflammatory properties, mediated primarily through radical scavenging, cyclooxygenase inhibition, and cytokine modulation. Owing to its distinct chemistry, specific traditional uses for respiratory and digestive ailments, limited endemic habitat, and underexplored status, L. multifida presents a promising candidate for future research with high potential for novel drug discovery, particularly in antiparasitic and respiratory therapies. This review concludes by identifying key research priorities for L. multifida, including a detailed analysis of its non-volatile compounds, mechanistic elucidation, toxicological assessments, and standardization of extracts. Addressing these gaps is essential to validate its traditional applications and advance its development into evidence-based phytomedicines, adjuvant therapies, and natural agrochemicals.
