Radiomics and Machine Learning Approaches for the Preoperative Classification of In Situ vs. Invasive Breast Cancer Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE–MRI)
- Autori: Conte, L.; Rizzo, R.; Sallustio, A.; Maggiulli, E.; Capodieci, M.; Tramacere, F.; Castelluccia, A.; Raso, G.; De Giorgi, U.; Massafra, R.; Portaluri, M.; Cascio, D.; De Nunzio, G.
- Anno di pubblicazione: 2025
- Tipologia: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/686570
Abstract
Accurate preoperative distinction between in situ and invasive Breast Cancer (BC) is critical for clinical decision-making and treatment planning. Radiomics and Machine Learning (ML) have shown promise in enhancing diagnostic performance from breast MRI, yet their application to this specific task remains underexplored. The aim of this study was to evaluate the performance of several ML classifiers, trained on radiomic features extracted from DCE–MRI and supported by basic clinical information, for the classification of in situ versus invasive BC lesions. In this study, we retrospectively analysed 71 post-contrast DCE–MRI scans (24 in situ, 47 invasive cases). Radiomic features were extracted from manually segmented tumour regions using the PyRadiomics library, and a limited set of basic clinical variables was also included. Several ML classifiers were evaluated in a Leave-One-Out Cross-Validation (LOOCV) scheme. Feature selection was performed using two different strategies: Minimum Redundancy Maximum Relevance (MRMR), mutual information. Axial 3D rotation was used for data augmentation. Support Vector Machine (SVM), K Nearest Neighbors (KNN), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) were the best-performing models, with an Area Under the Curve (AUC) ranging from 0.77 to 0.81. Notably, KNN achieved the best balance between sensitivity and specificity without the need for data augmentation. Our findings confirm that radiomic features extracted from DCE–MRI, combined with well-validated ML models, can effectively support the differentiation of in situ vs. invasive breast cancer. This approach is quite robust even in small datasets and may aid in improving preoperative planning. Further validation on larger cohorts and integration with additional imaging or clinical data are recommended.