Skip to main content
Passa alla visualizzazione normale.

MASSIMILIANO ZINGALES

Competition between elasticity and adhesion in caterpillar locomotion

  • Authors: Argenziano, Mario; Zingales, Massimiliano; Cutolo, Arsenio; Bologna, Emanuela; Fraldi, Massimiliano
  • Publication year: 2025
  • Type: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/678927

Abstract

In recent years, there has been a growing interest in understanding animals’ locomotion mechanisms for developing bio-inspired micro- or nano-robots capable of overcoming obstacles and navigating in confined environments. Among non-pedal crawlers, caterpillars exhibit one of the most stable and efficient gait strategies, utilizing muscle contractions and substrate grip. Although several approaches have been proposed to model their locomotion, little is known about the competition between body elasticity and adhesion, which we demonstrate playing a central role in crawling gait. Preliminarily, experimental observations and measurements were performed on Pieris brassicae larvae, gaining insights into fundamental features characterizing caterpillar locomotion and estimating key geometrical and mechanical parameters. A minimal but effective one-dimensional discrete model was thus conceived to capture all the relevant aspects of the movement. Inter-mass springs model the deformable body units, Winkler-like constraints with an adhesion threshold reproduce elastic interactions and attaching/detaching events at prolegs-substrate interface, and a triggering muscle contraction initiates the larva’s crawling cycle, generating the observed travelling wave. After demonstrating theoretically that caterpillars move obeying quasi-static laws, we proved robustness of the proposed approach by showing very good agreement between theoretical outcomes and experimental evidence, so paving the way for new optimization strategies in soft robotics.