Skip to main content
Passa alla visualizzazione normale.

FRANCESCO ZANLUNGO

Relaxation to the asymptotic distribution of global errors due to round off

Abstract

We propose an analysis of the effects introduced by finite accuracy and round-off arithmetic on discrete dynamical systems. We investigate, from a statistical viewpoint and using the tool of the decay of fidelity, the error of the numerical orbit with respect to the exact one. As a model we consider a random perturbation of the exact orbit with an additive noise, for which exact results can be obtained for some prototype maps. For regular anysocrounous maps the fidelity has a power law decay, whereas the decay is exponential if a random perturbation is introduced. For chaotic maps the decay is superexponential after an initial plateau and our method is suitable to identify the reliability threshold of numerical results, i.e. a number of iterations below which global errors can be ignored. The same behaviour is observed if a random perturbation is introduced.