Skip to main content
Passa alla visualizzazione normale.

MARIA ANTONIETTA RAGUSA

Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes

  • Authors: Marlétaz, Ferdinand; Couloux, Arnaud; Poulain, Julie; Labadie, Karine; Da Silva, Corinne; Mangenot, Sophie; Noel, Benjamin; Poustka, Albert J.; Dru, Philippe; Pegueroles, Cinta; Borra, Marco; Lowe, Elijah K.; Lhomond, Guy; Besnardeau, Lydia; Le Gras, Stéphanie; Ye, Tao; Gavriouchkina, Daria; Russo, Roberta; Costa, Caterina; Zito, Francesca; Anello, Letizia; Nicosia, Aldo; Ragusa, Maria Antonietta; Pascual, Marta; Molina, M. Dolores; Chessel, Aline; Di Carlo, Marta; Turon, Xavier; Copley, Richard R.; Exposito, Jean-Yves; Martinez, Pedro; Cavalieri, Vincenzo; Ben Tabou de Leon, Smadar; Croce, Jenifer; Oliveri, Paola; Matranga, Valeria; Di Bernardo, Maria; Morales, Julia; Cormier, Patrick; Geneviève, Anne-Marie; Aury, Jean Marc; Barbe, Valérie; Wincker, Patrick; Arnone, Maria Ina; Gache, Christian; Lepage, Thierry
  • Publication year: 2023
  • Type: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/624018

Abstract

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.