Modeling the Emergence of Insight via Quantum Interference on Semantic Graphs
- Authors: Pavone, A.; Faro, S.
- Publication year: 2025
- Type: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/692035
Abstract
Creative insight is a core phenomenon of human cognition, often characterized by the sudden emergence of novel and contextually appropriate ideas. Classical models based on symbolic search or associative networks struggle to capture the non-linear, context-sensitive, and interference-driven aspects of insight. In this work, we propose a computational model of insight generation grounded in continuous-time quantum walks over weighted semantic graphs, where nodes represent conceptual units and edges encode associative relationships. By exploiting the principles of quantum superposition and interference, the model enables the probabilistic amplification of semantically distant but contextually relevant concepts, providing a plausible account of non-local transitions in thought. The model is implemented using standard Python 3.10 libraries and is available both as an interactive fully reproducible Google Colab notebook and a public repository with code and derived datasets. Comparative experiments on ConceptNet-derived subgraphs, including the Candle Problem, 20 Remote Associates Test triads, and Alternative Uses, show that, relative to classical diffusion, quantum walks concentrate more probability on correct targets (higher AUC and peaks reached earlier) and, in open-ended settings, explore more broadly and deeply (higher entropy and coverage, larger expected radius, and faster access to distant regions). These findings are robust under normalized generators and a common time normalization, align with our formal conditions for transient interference-driven amplification, and support quantum-like dynamics as a principled process model for key features of insight.
