Skip to main content
Passa alla visualizzazione normale.

ROSARIA NARDELLO

Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome

  • Authors: Salpietro, V.; Maroofian, R.; S Zaki, M.; Wangen, J.; Ciolfi, A.; Barresi, S.; Efthymiou, S.; Lamaze, A.; N Aughey, G.; Al Mutairi, F.; Rad, A.; Rocca, C.; Calì, E.; Accogli, A.; Zara, F.; Striano, P.; Mojarrad, M.; Tariq, H.; Giacopuzzi, E.; C Taylor, J.; Oprea, G.; Skrahin, V.; Ur Rehman, K.; Abd Elmaksoud, M.; Bassiony, M.; G El Said, H.; S Abdel-Hamid, M.; Al Shalan, M.; Seo, G.; Kim, S.; Lee, H.; Khang, R.; Y Issa, M.; M Elbendary, H.; Rafat, K.; M Marinakis, N.; Traeger-Synodinos, J.; Ververi, A.; Sourmpi, M.; Eslahi, A.; Khadivi Zand, F.; Beiraghi Toosi, M.; Babaei, M.; Jackson, A.; Study Group, S.; Bertoli-Avella, A.; T Pagnamenta, A.; Niceta, M.; Battini, R.; Corsello, A.; Leoni, C.; Chiarelli, F.; Dallapiccola, B.; Ali Faqeih, E.; K Tallur, K.; Alfadhel, M.; Alobeid, E.; Maddirevula, S.; Mankad, K.; Banka, S.; Ghayoor-Karimiani, E.; Tartaglia, M.; K Chung, W.; Green, R.; S Alkuraya, F.; C Jepson, J.E.; Houlden, H.; Nardello, R.
  • Publication year: 2024
  • Type: Articolo in rivista
  • Key words: animal models; ectodermal disorders; GREND syndrome; GTPBP1; GTPBP2; NBIA; neurodegeneration; neurodevelopmental disorders; ribosome stalling; ribosomopathies;
  • OA Link: http://hdl.handle.net/10447/638705

Abstract

The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.