Skip to main content
Passa alla visualizzazione normale.

MARIA CATERINA MANNONE

Trajectory-based and Sound-based Medical Data Clustering

Abstract

Challenges in medicine are often faced as interdisciplinary endeav- ors. In such an interdisciplinary view, sonification of medical data provides an additional sensory dimension to highlight often hard- to-find information and details. Some examples of sonification of medical data include Covid genome mapping [5], auditory repre- sentations of tridimensional objects as the brain [4], enhancement of medical imagery through the use of sound [1]. Here, we focus on kidney filtering-efficiency time-evolution data. We consider the estimated glomerular filtration rate (eGFR), the main indicator of kidney efficiency in diabetic kidney disease patients.1 We propose a technique to sonify the eGFR trajectories with time, frequency, and timbre to distinguish amongst patients (Figure 1). Multiple pitch tra- jectories can be formally investigated with the tools of counterpoint (Figure 2), and computationally analyzed with sound-processing techniques. Patients who present similar patterns of eGFR behavior can be more easily spotted through musical similarities. We use the Fréchet distance, which evaluates the shape similarity between curves [2], to cluster patients with similar eGFR behavior. We thus compare the information gathered through sonification and shape- based analysis. We find the mean curves in each trajectory cluster and we compare them with the characteristics of sonified curves. Clustering methods have also been applied to sound analysis: it is the case of k-means to cluster sound data [3]. The Fréchet-based clustering technique is a development of k-means taking shape into account. Thus, we sketch a sound-based clustering approach for medical data, as an additional tool to find patterns of behavior. This study can foster new research between computer science, medicine, and sound processing.