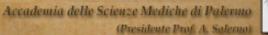


Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone" **Direzione Scientifica** 

Facoltà di Medicina e Chirurgia




## NAFLD and **Cardiovascular Risk**

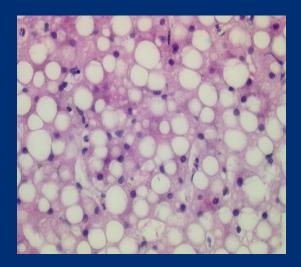
**INCONTRI SCIENTIFICI DI FACOLTA'** 

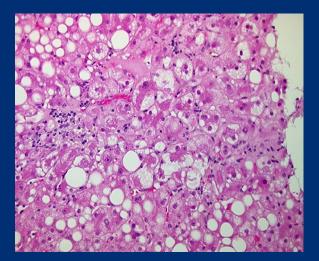
dubitando ad veritatem pervenimus

Salvatore Petta MD, PhD Sezione di Gastroenterologia, Di.Bi.M.I.S. Università di Palermo petsa@inwind.it Salvatore.petta@unipa.it

AULA ACCADEMIA DELLE SCIEN 12 Giugno 2013 - ore 15




Consultation de Miderins






# NAFLD

Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of disorders characterized by predominantly macrovesicular hepatic steatosis that occurs in individuals in the absence of significant alcohol consumption





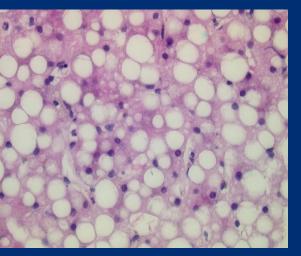


#### Selected studies on prevalence of NAFLD and NASH Population-based series

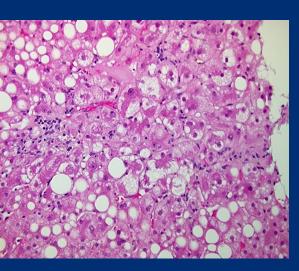
| Author (year)  | Diagnostic method | Country       | Ν     | Prevalence of NAFLD (%) | Prevalence<br>of NASH (%) |
|----------------|-------------------|---------------|-------|-------------------------|---------------------------|
| Clark (2003)   | Aminotransferases | Unites States | 15676 | 5.4                     | ND                        |
| Ruhl (2003)    | Aminotransferases | United States | 5724  | 2.8                     | ND                        |
| Bedogni (2005) | Ultrasonography   | Italy         | 598   | 23                      | ND                        |
| Fan (2005)     | Ultrasonography   | China         | 3175  | 15                      | ND                        |
| Nomura (1988)  | Ultrasonography   | Japan         | 2574  | 14                      | ND                        |
| Browing (2004) | RMN               | Unites States | 2287  | 31                      | ND                        |

Angulo P et al, Aliment Pharmacol Ther 2007




## NAFLD and Metabolic Syndrome

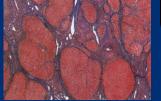
#### Table 2. Clinical syndromes associated with insulin resistance.


- Type 2 diabetes
- CVD
- Essential hypertension
- Polycystic ovary syndrome
- Nonalcoholic fatty liver disease
- Certain forms of cancer
- Sleep apnea



# NAFLD




## Simple fatty liver: the only histologic finding is the presence of steatosis



Non-alcoholic steatohepatitis (NASH): steatosis associated with hepatocellular injury/inflammation with or without fibrosis











#### Surrogate markers of NAFLD and atherosclerosis





 Surrogate markers of NAFLD and atherosclerosis

•NAFLD and both carotid and coronary atherosclerosys: cross-sectional studies







 Surrogate markers of NAFLD and atherosclerosis

•NAFLD and both carotid and coronary atherosclerosys: cross-sectional studies

•NAFLD and heart dysfunction:crosssectional studies







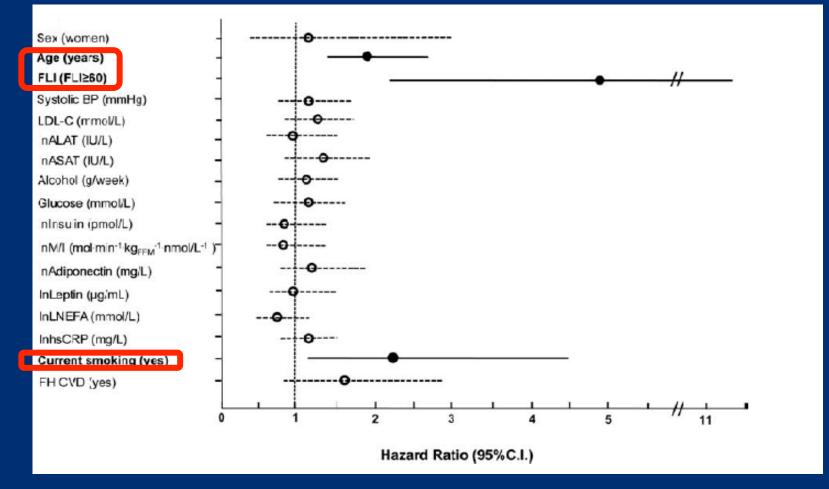
 Surrogate markers of NAFLD and atherosclerosis

•NAFLD and both carotid and coronary atherosclerosys: cross-sectional studies

•NAFLD and heart dysfunction:crosssectional studies

NAFLD and CVD: prospective studies






# NAFLD and CVD



Evidences using liver tests as surrogate markers of steatosis

## Fatty Liver Index and Early Carotid Atherosclerosis



1,012 subjects without hypertension, diabetes, CVD, and dyslipidemia

Kozakova et al, Hepatology 2012

## GGT Levels and Incident Coronary Heart Disease

| Study                                  |              | Hazard              | %      |
|----------------------------------------|--------------|---------------------|--------|
| ID                                     |              | Ratio (95% CI)      | Weight |
| BWHHS                                  |              | 1.15 (0.88, 1.50)   | 12.01  |
| Ebrahim 2006                           | -            | 0.65 (0.50, 0.85)   |        |
| Hozawa 2006 (men)                      |              | 0.95 (0.44, 2.07)   | 3.41   |
| Hozawa 2006 (women)                    |              | → 8.34 (2.82, 24.69 | )1.93  |
| Lee 2006 (men)                         | +            | 1.20 (1.10, 1.31)   | 16.99  |
| Lee 2006 (women)                       | *            | 1.14 (1.03, 1.27)   | 16.66  |
| Meisinger 2006                         |              | 1.56 (1.13, 2.15)   | 10.35  |
| Ruttmann 2005 (men)                    |              | 1.27 (0.92, 1.75)   | 10.35  |
| Ruttmann 2005 (women)                  | -            | 1.52 (1.03, 2.25)   | 8.57   |
| Wannamethee 1995                       |              | 1.23 (0.80, 1.89)   | 7.78   |
| Overall (I-squared = 75.9%, p = 0.000) | $\Diamond$   | 1.20 (1.02, 1.40)   | 100.00 |
| NOTE: Weights are from random effects  | analysis     |                     |        |
|                                        | .5 1 2 4 6 8 |                     |        |

## GGT Levels and Incident Stroke

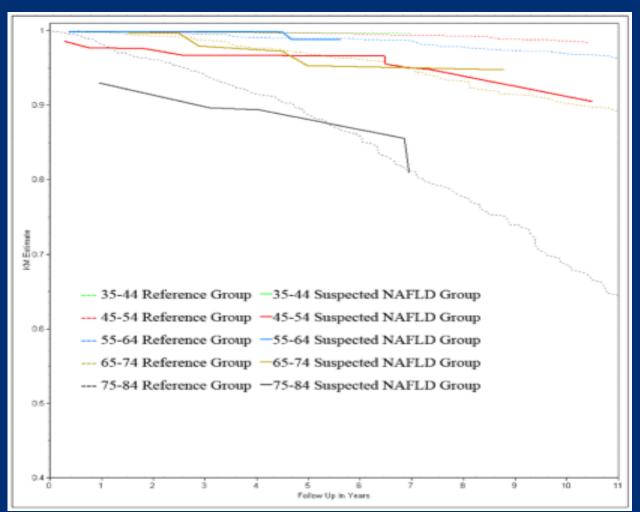
| Study<br>ID                                    | Hazard<br>Ratio (95% CI) | %<br>Weight |
|------------------------------------------------|--------------------------|-------------|
| BWHHS                                          | 1.40 (0.87, 2.26)        | ) 10.70     |
| Bots 2002                                      | 1.26 (0.99, 1.61)        | ) 14.73     |
| Ebrahim 2006                                   | 2.40 (2.05, 2.80)        | ) 16.00     |
| Hozawa 2006 (men)                              | 1.07 (0.53, 2.15)        | 7.53        |
| Hozawa 2006 (women)                            | 1.43 (0.74, 2.76)        | 8.03        |
| Jousilahti 2000                                | 1.24 (1.03, 1.50)        | ) 15.58     |
| Jousilahti 2000                                | 1.33 (1.07, 1.66)        | ) 15.09     |
| Ruttmann 2005 (men)                            | - 2.64 (1.25, 5.56)      | ) 6.98      |
| Ruttmann 2005 (women)                          | - 2.21 (0.88, 5.54)      | ) 5.35      |
| Overall (I-squared = 81.6%, p = 0.000)         | 1.54 (1.19, 1.99)        | ) 100.00    |
| NOTE: Weights are from random effects analysis |                          |             |

Fraser et al, Art Tromb Vasc Biol 2007



## GGT Levels and Incident CHD or Stroke

| Study                                          | Hazard              | %      |
|------------------------------------------------|---------------------|--------|
| ID                                             | Ratio (95% CI)      | Weight |
| BWHHS                                          | 1.17 (0.93, 1.48)   | 6.85   |
| Bots 2002                                      | 1.26 (0.99, 1.61)   | 6.62   |
| Ebrahim 2006                                   | - 1.73 (1.51, 1.98) | 9.35   |
| Hozawa 2006 (men)                              | 0.93 (0.62, 1.40)   | 3.73   |
| Hozawa 2006 (women)                            | 1.73 (1.13, 2.64)   | 3.60   |
| Jousilahti 2000 (men)                          | 1.24 (1.03, 1.50)   | 8.00   |
| Jousilahti 2000 (women)                        | 1.33 (1.07, 1.66)   | 7.16   |
| Lee 2006 (men)                                 | 1.20 (1.10, 1.31)   | 10.51  |
| Lee 2006 (women)                               | 1.14 (1.03, 1.27)   | 10.17  |
| Lee 2006A                                      | 1.19 (1.03, 1.38)   | 9.00   |
| Meisinger 2006                                 | 1.56 (1.13, 2.15)   | 5.06   |
| Ruttmann 2005 (men)                            | - 1.66 (1.40, 1.97) | 8.37   |
| Ruttmann 2005 (women)                          | - 1.64 (1.36, 1.97) | 8.06   |
| Wannamethee 1995                               | 1.23 (0.80, 1.89)   | 3.51   |
| Overall (I-squared = 73.1%, p = 0.000)         | 1.34 (1.22, 1.48)   | 100.00 |
| NOTE: Weights are from random effects analysis |                     |        |
| .5 <b>1</b> 1.5                                | 2 2.5               |        |


Fraser et al, Art Tromb Vasc Biol 2007

#### 

## NAFLD as Risk Factor for Incident CVD Events

|                                         |                         | Odds Ratio                                  | Odds Ratio          |
|-----------------------------------------|-------------------------|---------------------------------------------|---------------------|
| Study or Subgroup                       | Weight                  | M-H, Random, 95% Cl                         | M-H, Random, 95% Cl |
| 3.1.1 ALT                               |                         |                                             |                     |
| Fraser 2009                             | 6.0%                    | 0.98 [0.64, 1.49]                           | +                   |
| Goessling 2008                          | 8.0%                    | 1.05 [0.77, 1.43]                           | +                   |
| Monami 2008                             | 1.7%                    | 1.00 [0.36, 2.76]                           |                     |
| Olynyk 2009 (Men)                       | 6.7%                    | 0.79 [0.54, 1.16]                           | -+                  |
| Olynyk 2009 (women)                     | 7.2%                    | 1.08 [0.76, 1.53]                           | +                   |
| Schindhelm 2007                         | 5.6%                    | 2.02 [1.30, 3.17]                           |                     |
| Subtotal (95% CI)                       | 35.2%                   | 1.10 [0.85, 1.41]                           | <b>*</b>            |
| Total events                            |                         |                                             |                     |
| Heterogeneity: Tau <sup>2</sup> = 0.05; | Chi <sup>2</sup> = 10.4 | 48, df = 5 (P = 0.06); l <sup>2</sup> = 52% |                     |
| Test for overall effect: Z = 0          | .72 (P = 0.4            | 47)                                         |                     |
|                                         |                         |                                             |                     |
| 3.1.2 GGT                               |                         |                                             |                     |
| Fraser 2009                             | 5.9%                    | 1.18 [0.77, 1.80]                           | +-                  |
| Hozawa 2007 (men)*                      | 2.8%                    | 0.79 [0.38, 1.64]                           |                     |
| Hozawa 2007 (women)*                    | 1.9%                    | 2.88 [1.13, 7.36]                           |                     |
| Lee DH 2006                             | 10.7%                   | 1.48 [1.23, 1.79]                           | *                   |
| Lee DS 2007                             | 8.2%                    | 1.67 [1.23, 2.26]                           | -                   |
| Meisinger 2006                          | 4.5%                    | 2.34 [1.37, 3.98]                           |                     |
| Monami 2008                             | 2.0%                    | 1.40 [0.57, 3.46]                           | 2                   |
| Ruttmann 2005 (men)*                    | 11.1%                   | 1.57 [1.33, 1.86]                           | +                   |
| Ruttmann 2005 (women)*                  | 11.0%                   | 1.68 [1.42, 2.00]                           | -                   |
| Wannamethee 1995*                       | 6.6%                    | 1.49 [1.01, 2.19]                           |                     |
| Subtotal (95% CI)                       | 64.8%                   | 1.57 [1.42, 1.74]                           | +                   |
| Total events                            |                         |                                             |                     |
| Heterogeneity: Tau <sup>2</sup> = 0.00; | Chi <sup>2</sup> = 10.2 | 23, df = 9 (P = 0.33); l² = 12%             |                     |
| Test for overall effect: Z = 8          | .83 (P < 0.0            | 00001)                                      |                     |
|                                         |                         |                                             |                     |
|                                         |                         |                                             | •                   |
|                                         |                         |                                             |                     |
|                                         |                         |                                             | 0.01 0.1 1 10 100   |
|                                         |                         |                                             | Controls NAFLD      |

## Cardiovascular Disease Survival in NHANES III Cohort



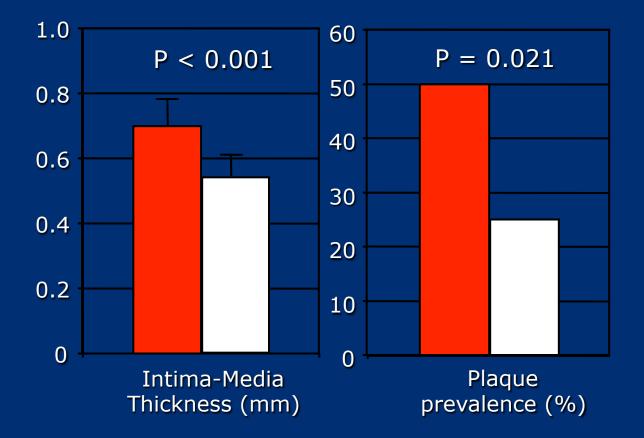
n=7574

#### Suspected NAFLD according to ALT levels

Dunn W et al, AJG 2008



# NAFLD and CVD




## Association between NAFLD and Carotid Atherosclerosis: cross-sectional studies



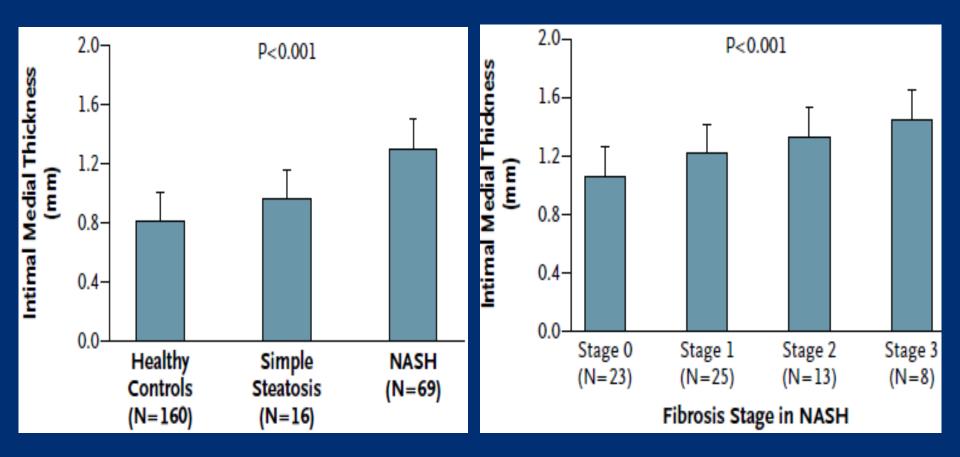
## Carotid Atherosclerosis and NAFLD

#### NAFLD Controls



Brea, Arterioscler Thromb Vasc Biol 2005




## Carotid Atherosclerosis and NAFLD

| Study name            | Outcome | Sa    | Sample size |       | MH odd | MH odds ratio and 95% CI |       |             |     |
|-----------------------|---------|-------|-------------|-------|--------|--------------------------|-------|-------------|-----|
|                       |         | NAFLD | Controls    | Total |        |                          |       |             |     |
| Brea A et al, 2005    | Plaques | 40    | 40          | 80    |        |                          |       |             |     |
| Aygun C et al, 2008   | Plaques | 40    | 40          | 80    |        |                          |       | ╉┼╸         |     |
| Targher G et al, 2006 | Plaques | 85    | 160         | 245   |        |                          | ·   • | <b>-</b> ∎- |     |
| Fracanzani et al, 200 | Plaques | 125   | 250         | 375   |        |                          | -     | ╉┥          |     |
| Volzke H et al, 2005  | Plaques | 992   | 1440        | 2432  |        |                          |       |             |     |
|                       |         | 1282  | 1930        | 3212  |        |                          | •     |             |     |
|                       |         | 1282  | 1930        | 3212  |        |                          | _   ◄ |             |     |
|                       |         |       |             |       | 0.01   | 0.1                      | 1     | 10          | 100 |
|                       |         |       |             |       | С      | ontrols                  |       | NAFLD       |     |

Sookoian et al, J Hep 2008



## Carotid Atherosclerosis and NAFLD





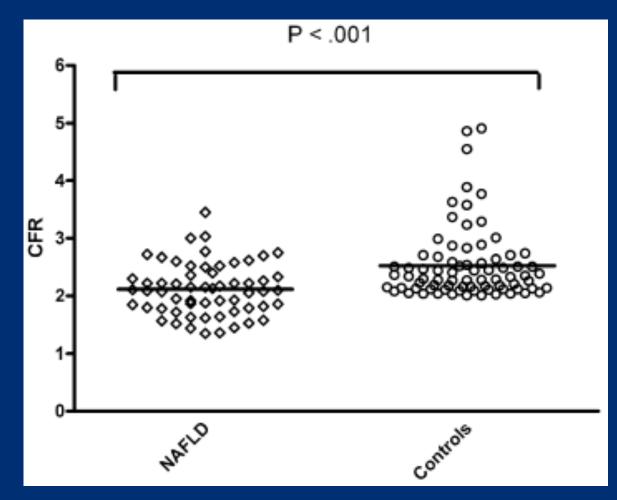


#### Nonalcoholic Fatty Liver Is Not Associated with Carotid Intima-Media Thickness in Type 2 Diabetic Patients

**JCEM 2009** 

Jean Michel Petit, Boris Guiu, Beatrice Terriat, Romaric Loffroy, Isabelle Robin, Vincent Petit, Benjamin Bouillet, Marie-Claude Brindisi, Laurence Duvillard, Patrick Hillon, Jean-Pierre Cercueil, and Bruno Verges

No Association between NAFLD evaluated ma MR spectroscopy, and carotid intima-media thickness in 101 diabetic patients




# NAFLD and CVD



#### Association between NAFLD and Coronary Atherosclerosis: cross-sectional studies

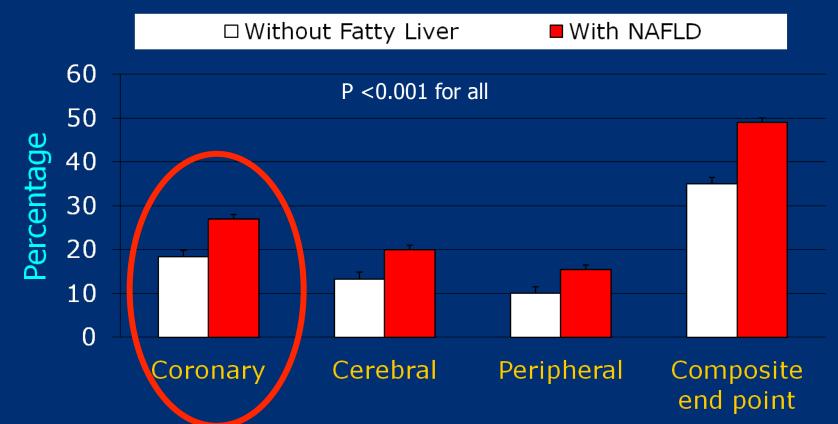
### **Coronary Flow Reserve by Doppler Echocardiography in NAFLD Patients**



Coronary flow reserve was lower in 59 NAFLD compared to 77 controls, and inversely related to the severity of liver fibrosis.

Yilmaz et al, Atherosclerosis 2010



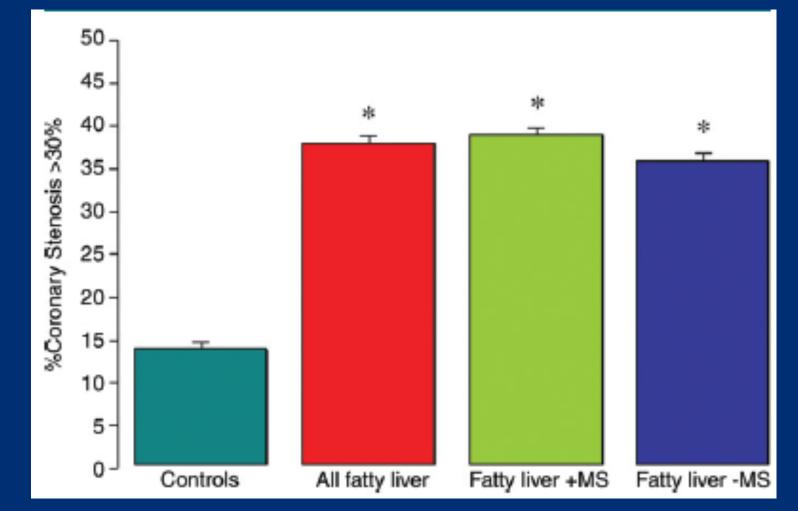

## Coronary Artery Disease and NAFLD

| Factors associated with coronary artery disease |                     |         |                       |         |  |  |  |
|-------------------------------------------------|---------------------|---------|-----------------------|---------|--|--|--|
|                                                 | Univariate analysis |         | Multivariate analysis |         |  |  |  |
| Factors                                         | OR (95% CI)         | p Value | OR (95% CI)           | p Value |  |  |  |
| Fatty liver                                     | 3.07 (2.09 to 4.51) | <0.001  | 2.31 (1.46 to 3.64)   | < 0.001 |  |  |  |
| Age (years)                                     | 1.03 (1.02 to 1.05) | <0.001  | 1.05 (1.03 to 1.07)   | < 0.001 |  |  |  |
| Male gender                                     | 2.44 (1.66 to 3.60) | <0.001  | 2.60 (1.65 to 4.09)   | < 0.001 |  |  |  |
| Smoking                                         | 1.45 (0.96 to 2.20) | 0.081   |                       |         |  |  |  |
| Alcohol                                         | 0.84 (0.51 to 1.38) | 0.48    |                       |         |  |  |  |
| Diabetes                                        | 2.29 (1.46 to 3.61) | <0.001  | 1.45 (0.84 to 2.51)   | 0.18    |  |  |  |
| Hypertension                                    | 1.38 (0.94 to 2.02) | 0.098   |                       |         |  |  |  |
| Systolic blood pressure (mm Hg)                 | 1.01 (1.00 to 1.02) | 0.14    |                       |         |  |  |  |
| Diastolic blood pressure (mm Hg)                | 1.01 (1.00 to 1.03) | 0.091   |                       |         |  |  |  |
| Body mass index (kg/m <sup>2</sup> )            | 1.02 (0.97 to 1.07) | 0.54    |                       |         |  |  |  |
| Waist circumference (cm)                        | 1.03 (1.01 to 1.05) | 0.004   | 0.99 (0.97 to 1.02)   | 0.56    |  |  |  |
| Fasting glucose (mmol/l)                        | 1.21 (1.07 to 1.37) | 0.002   | 1.12 (0.98 to 1.28)   | 0.092   |  |  |  |
| Total cholesterol (mmol/l)                      | 0.88 (0.76 to 1.03) | 0.12    |                       |         |  |  |  |
| HDL-cholesterol (mmol/l)                        | 0.20 (0.11 to 0.36) | <0.001  | 0.25 (0.13 to 0.48)   | < 0.001 |  |  |  |
| LDL-cholesterol (mmol/l)                        | 1.04 (0.84 to 1.29) | 0.70    |                       |         |  |  |  |
| Triglycerides (mmol/l)                          | 0.99 (0.85 to 1.15) | 0.87    |                       |         |  |  |  |
| Creatinine (µmol/l)                             | 1.00 (1.00 to 1.01) | 0.16    |                       |         |  |  |  |
| Alanine aminotransferase (IU/I)                 | 1.01 (1.00 to 1.02) | 0.005   | 1.01 (1.00 to 1.02)   | 0.044   |  |  |  |

The presence of NAFLD is independently associated with CAD, in 612 patients underwent coronary angiogram

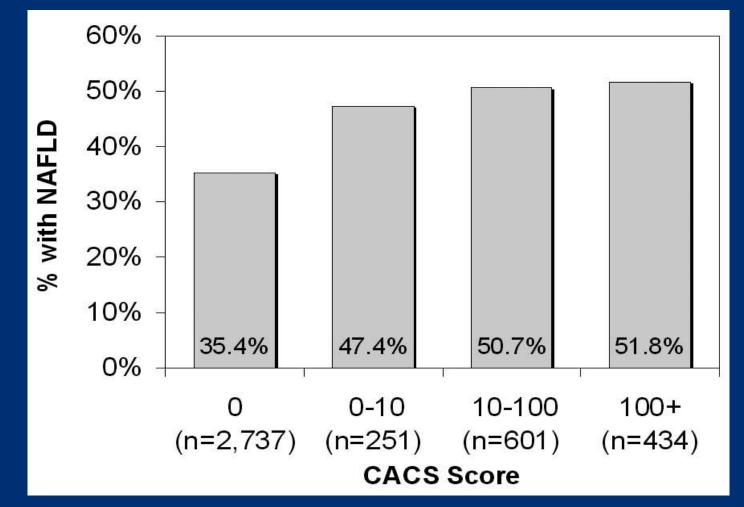


### Prevalence of CVD among 2,392 T2DM patients (Valpolicella Heart Diabetes Study)




<u>Coronary</u>; myocardial infarction, angina pectoris or revascularization procedures <u>Cerebrovascular</u>; ischemic stroke, recurrent TIA, carotid endarterectomy or carotid stenosis >70% (by echo-Doppler) <u>Peripheral</u>: claudication, rest pain - as confirmed by echo-Doppler - lower extremity amputation or revascularization procedures

Targher, Diabetes Care 2007


#### (E)

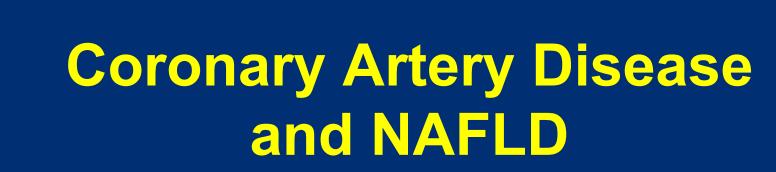
### Coronary Artery Disease by TC and NAFLD in Health Subjects



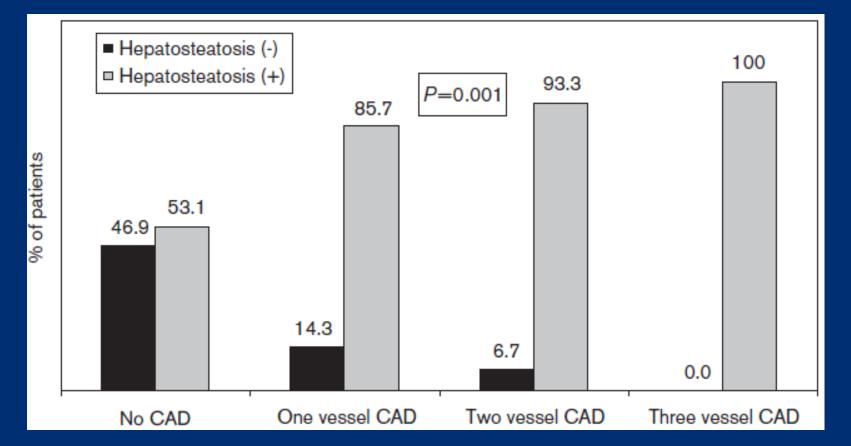
29 NAFLD pts at low to intermediate CAD risk, were compared to 33 age-sex matched individuals without steatosis Assy N, Radiology 2010

# Coronary Artery Calcification by TC and NAFLD in Health Subjects




Coronary artery calcification indepedently associated with ultrasonographic NAFLD, also after correction for TC detected visceral and sub-cutaneous fat

Kim D, Hepatology 2012


# Coronary Artery Calcification by TC and NAFLD in Health Subjects

|                                       |      | Model dependent varia | able    |
|---------------------------------------|------|-----------------------|---------|
| Coronary artery calcium score >0      | ORs  | 95% CIs               | P value |
| Age (per year)                        | 1.13 | 1.12-1.14             | < 0.001 |
| Female sex                            | 0.35 | 0.27-0.47             | < 0.001 |
| Triglyceride (per mg/dL)              | 1.03 | 0.95-1.11             | 0.51    |
| HDL-C (per mg/dL)                     | 0.71 | 0.53-0.95             | 0.02    |
| LDL-C (per mg/dL)                     | 1.44 | 1.31-1.57             | < 0.001 |
| Waist (per cm)                        | 0.99 | 0.98-1.00             | 0.06    |
| Fatty liver                           | 1.21 | 1.01-1.45             | 0.04    |
| Systolic blood pressure (per mmHg)    | 1.01 | 1.00-1.02             | 0.02    |
| Alcohol (per unit)                    | 1.00 | 0.99-1.02             | 0.75    |
| Smoking (ex/current vs. never)        | 1.35 | 1.14-1.60             | < 0.001 |
| Activity (30 min/day vs. no activity) | 1.14 | 0.98-1.33             | 0.08    |
| Hx CVA                                | 3.56 | 1.39-9.12             | 0.01    |
| Hx CHD                                | 2.72 | 1.56-4.75             | 0.001   |
| Hx HTN                                | 2.21 | 1.82-2.68             | < 0.001 |
| Hx diabetes                           | 2.34 | 1.77-3.10             | < 0.001 |
| HOMA-IR (per 1.0 unit)                | 1.10 | 1.02-1.18             | 0.02    |

In a South Korean occupational cohort of 10,153 people, coronary artery calcification indepedently associated with both ultrasonographic NAFLD and IR



Ś



The presence of NAFLD is independently associated with the presence and extent of CAD, in 92 patients with acute coronary syndrome

Arslan et al, Cor Art Dis 2007

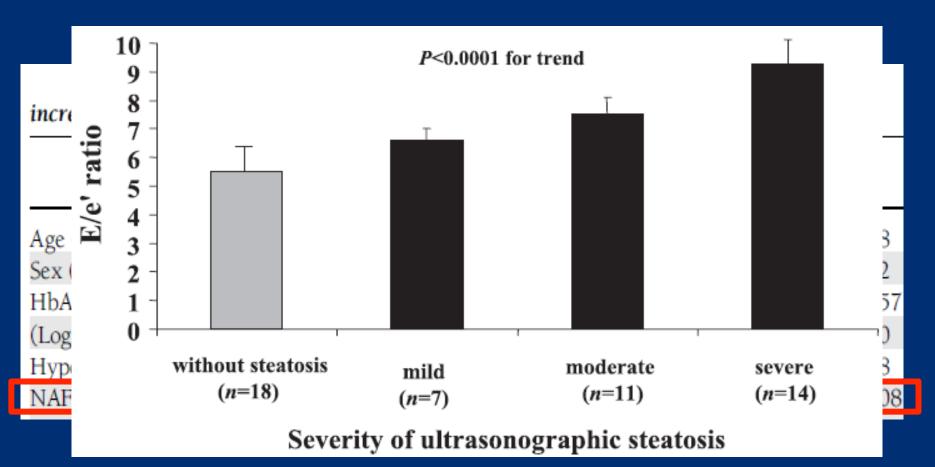


# NAFLD and CVD



## Association between NAFLD and early cardiovascular alterations



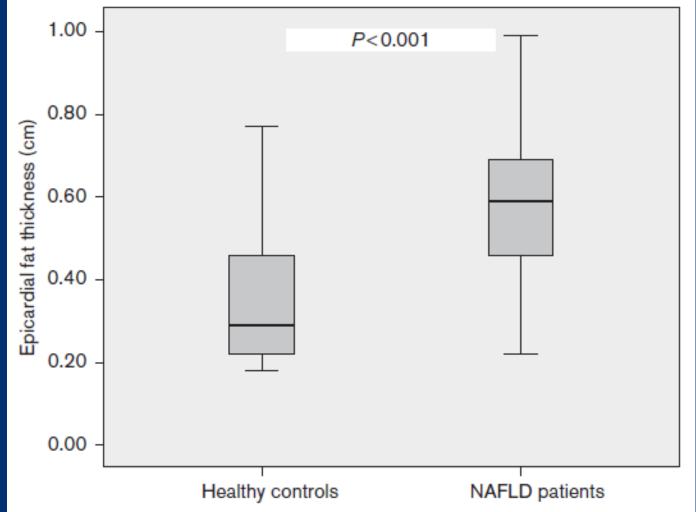

# Left Ventricular Alterations in NAFLD Patients

|                               | Control          | NAFLD            | Р        |
|-------------------------------|------------------|------------------|----------|
| Cardiac geometry              |                  |                  |          |
| LVDd (mm)                     | $48.6 \pm 3.9$   | $48.8 \pm 4.9$   | 0.86     |
| IVS (mm)                      | $8.9 \pm 2.9$    | $11.3 \pm 2.2$   | 0.001    |
| PWT (mm)                      | $85 \pm 17$      | $0.7 \pm 2.3$    | 0.04     |
| LV mass (g)                   | $115.3 \pm 35.4$ | $160.7 \pm 58.7$ | 0.001    |
| LVM index (g/m <sup>2</sup> ) | $66.6 \pm 27.8$  | $78.5 \pm 22.2$  | 0.06     |
| LVM/height (g/m)              | $69.2 \pm 19.8$  | $92.6 \pm 29.5$  | 0.001    |
| RWT                           | $0.36 \pm 0.1$   | $0.41 \pm 0.1$   | 0.08     |
| Diastolic properties          |                  |                  |          |
| E (cm/s)                      | $86.4 \pm 20.0$  | $73.6 \pm 11.0$  | 0.006    |
| E/A                           | $1.76 \pm 0.8$   | $1.0 \pm 0.3$    | < 0.0001 |
| $V_{\rm p}$ (cm/s)            | /4./±18.4        |                  | < 0.0001 |
| DT (ms)                       | $148.1 \pm 26.5$ | $168.5 \pm 35.8$ | 0.01     |
| IVRT (ms)                     | $89 \pm 10$      | $91 \pm 11$      | 0.31     |
| E'of mitral annulus (cm/s)    | $13.8 \pm 1.7$   | $10.3 \pm 2$     | < 0.0001 |
| E/E'                          | $7.6 \pm 1.1$    | $7.1 \pm 1.7$    | 0.19     |
| Cardiac function              |                  |                  |          |
| EF (%)                        | $65.8 \pm 3.9$   | $64.3 \pm 6.5$   | 0.33     |
| S' (cm/s)                     | $6.0 \pm 2.0$    | $5.8 \pm 1.5$    | 0.12     |
| LV Tei index                  | $0.4 \pm 0.2$    | $0.4 \pm 0.2$    | 0.74     |

NAFLD patients (n=38) without morbid obesity, hypertension, and diabetes have mildly altered LV geometry and early features of left ventricular diastolic dysfunction.



## Left Ventricular Alterations in NAFLD Patients




Diabetic patients (n=50) had a greater prevalence of early diastolic dysfunction according to steatosis presence and severity

Bonapace S et al, Diab Care 2012

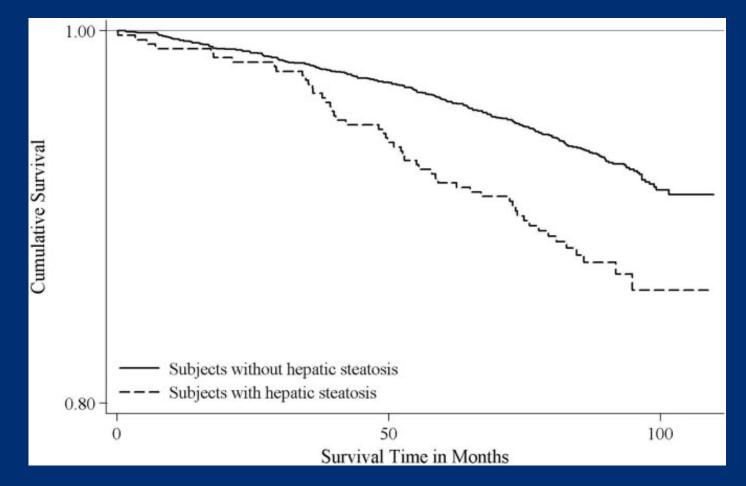


## Epicardial Fat Thickness and NAFLD



Colak J et al, EJGE 2012




# NAFLD and CVD



Association between NAFLD and CVD: evidences from prospective studies

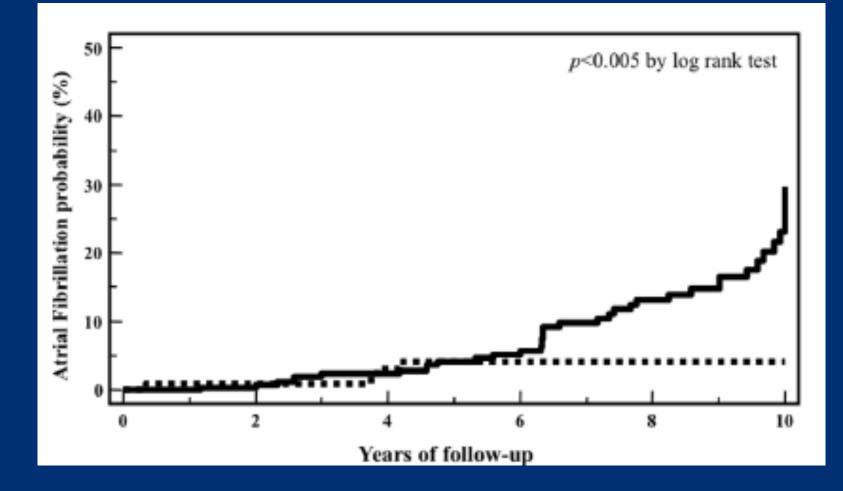


#### Survival in 4160 Subjects of the Study of Health in Pomerania According to Steatosis



Haring, Hepatology 2009




### **Causes of Death in NAFLD**

| CAUSE OF DEATH IN NAFLD |     |
|-------------------------|-----|
| Malignancy              | 28% |
|                         |     |
| Ischemic heart disease  | 25% |
|                         |     |
| Liver Disease           | 13% |
|                         |     |
| Infection               | 11% |
| Others                  |     |

-420 NAFLD followed for a mean period of 7.6 years (0.1-23.5)
-mortality of 12.6%
-mortality higher than expected in general population

Adams et al, Gastroenterology 2006

#### NAFLD as Predictor of Atrial Fibrillation in Type 2 Diabetic Patients



In a cohort of 400 diabetic patients, NAFLD predicted atrial fibrillation occurrence independently of metabolic risk factors

Targher et al, Plos One 2013

#### NAFLD as Predictor of Cardiovascular Events in Type 2 Diabetic Patients

| Variables                       | Control subjects | Case subjects  | Р     |
|---------------------------------|------------------|----------------|-------|
| n                               | 1,719            | 384            |       |
| Sex (% men)                     | 62%              | 63%            | 0.80  |
| Age (years)                     | 59 ± 3           | 61 ± 4         | 0.001 |
| BMI (kg/m <sup>2</sup> )        | 26 ± 3           | 28 ± 4         | 0.001 |
| Waist circumference (cm)        | 93 ± 11          | $99 \pm 13$    | 0.001 |
| Duration of diabetes (years)    | 14 ± 3           | $16 \pm 3$     | 0.60  |
| Diabetes treatment              |                  |                |       |
| Diet only                       | 21               | 15             | 0.20  |
| Oral hypoglycemic drugs         | 62               | 65             | 0.30  |
| Insulin only                    | 17               | 20             | 0.20  |
| Antihypertensive users          | 60               | 73             | 0.001 |
| Aspirin users                   | 49               | 48             | 0.80  |
| Lipid-lowering users            | 34               | 36             | 0.60  |
| Current smokers                 | 22               | 23             | 0.70  |
| Systolic blood pressure (mmHg)  | $127 \pm 12$     | $131 \pm 16$   | 0.001 |
| Diastolic blood pressure (mmHg) | 80 ± 12          | 83 ± 14        | 0.001 |
| A1C (%)                         | $6.9 \pm 0.8$    | $7.3 \pm 1.0$  | 0.001 |
| Triglycerides (mmol/l)          | $1.32 \pm 0.6$   | $1.62 \pm 1.0$ | 0.001 |
| HDL cholesterol (mmol/l)        | $1.40 \pm 0.3$   | $1.32 \pm 0.4$ | 0.001 |
| LDL cholesterol (mmol/l)        | $3.35 \pm 0.4$   | $3.32 \pm 0.5$ | 0.80  |
| AST (units/l)                   | $20 \pm 6$       | $26 \pm 12$    | 0.001 |
| ALT (units/l)                   | 24 ± 6           | $32 \pm 13$    | 0.001 |
| GGT (units/l)                   | $23 \pm 10$      | $34 \pm 14$    | 0.001 |
| Metabolic syndrome              | 50               | 75             | 0.001 |
| NAFLD                           | 61               | 96             | 0.001 |

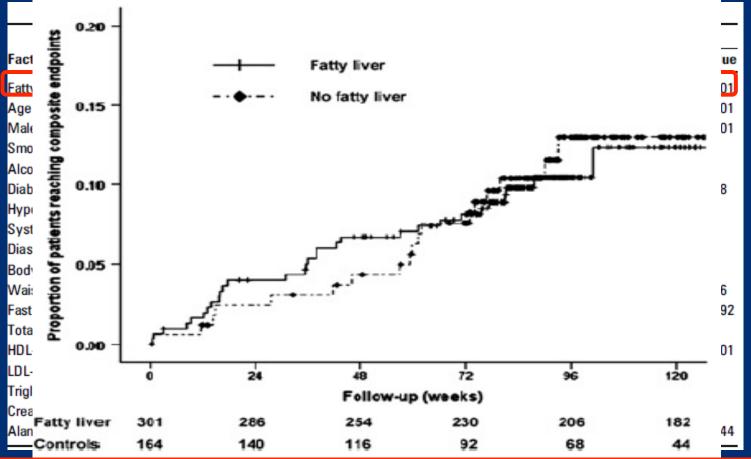
In a mean follow-up of 6.5 yrs 384 cases were observed (myocardial infarction, ischemic stroke, coronary revascularization, or cardiovascular death) and were indepedently associated with NAFLD presence Targher et al, Diab Care 2007



# BUT!!

### Non-alcoholic fatty liver disease and mortality among US adults: prospective cohort study

OPEN ACCESS


BMJ 2011

Mariana Lazo *PHD candidate*<sup>1</sup>, Ruben Hernaez *PHD candidate*<sup>1</sup>, Susanne Bonekamp *research associate of radiology*<sup>2</sup>, Ihab R Kamel *associate professor of radiology*<sup>2</sup>, Frederick L Brancati *professor of medicine and epidemiology*<sup>13</sup>, Eliseo Guallar *associate professor of epidemiology and medicine*<sup>134</sup>, Jeanne M Clark *associate professor of medicine and epidemiology*<sup>13</sup>

No Association between NAFLD and both all and cardiovascular mortality among 11,371 subjects



ŚŻ



The presence of NAFLD is independently associated with CAD, in 612 patients underwent coronary angiogram, but not with cardiovascular death/events

Wong W et al, Gut 2012



### NAFLD as Risk Factor for Incident CVD Events

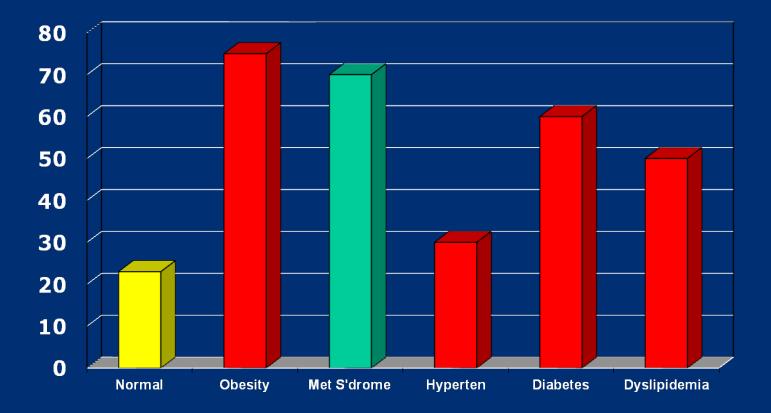
| Study or Subgroup Weight                                                                                                             |        | Odds Ratio<br>M-H, Fixed, 95% Cl | Odds Ratio<br>M-H, Fixed, 95% Cl    |
|--------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------|-------------------------------------|
| Eckstedt 2006*                                                                                                                       | 5.7%   | 1.75 [1.03, 2.95]                | -                                   |
| Hamaguchi 2007                                                                                                                       | 1.6%   | 4.12 [1.85, 9.15]                | · · · ·                             |
| Haring 2009 (females)*                                                                                                               | 1.1%   | 0.93 [0.19, 4.50]                |                                     |
| Haring 2009 (males)*                                                                                                                 | 2.5%   | 3.11 [1.28, 7.55]                |                                     |
| Jepsen 2003*                                                                                                                         | 58.6%  | 2.15 [1.86, 2.50]                |                                     |
| Sanyal 2006*                                                                                                                         | 0.3%   | 8.28 [1.02, 67.02]               |                                     |
| Targher 2005                                                                                                                         | 17.8%  | 1.53 [1.07, 2.17]                |                                     |
| Targher 2007                                                                                                                         | 12.4%  | 1.88 [1.30, 2.71]                |                                     |
| Total (95% CI)                                                                                                                       | 100.0% | 2.05 [1.81, 2.31]                |                                     |
| Total events                                                                                                                         |        |                                  |                                     |
| Heterogeneity: Chi <sup>2</sup> = 10.19, df = 7 (P = 0.18); l <sup>2</sup> = 31%<br>Test for overall effect: Z = 11.39 (P < 0.00001) |        |                                  | 0.01 0.1 1 10 100<br>Controls NAFLD |



### NAFLD vs NASH: Overall and CVD Mortality

| CVD-related mortality<br>Study or Subgroup Weight             |        | Odds Ratio                                 | Odds Ratio<br>M-H, Random, 95% Cl |  |  |
|---------------------------------------------------------------|--------|--------------------------------------------|-----------------------------------|--|--|
|                                                               |        | M-H, Random, 95% Cl                        |                                   |  |  |
| Adams 2005                                                    | 5.2%   | 0.06 [0.00, 1.69]                          | <                                 |  |  |
| Ekstedt 2006                                                  | 27.8%  | 1.94 [0.63, 5.96]                          |                                   |  |  |
| Matteoni 1999                                                 | 6.9%   | 0.67 [0.04, 10.92]                         |                                   |  |  |
| Rafiq 2009                                                    | 32.4%  | 0.55 [0.21, 1.46]                          |                                   |  |  |
| Soderberg 2009                                                | 27.8%  | 1.36 [0.45, 4.17]                          |                                   |  |  |
| Total (95% CI)                                                | 100.0% | 0.91 [0.42, 1.98]                          | -                                 |  |  |
| Total events                                                  |        |                                            |                                   |  |  |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: |        | 0.01 0.1 1 10 100<br>simple steatosis NASH |                                   |  |  |




## NAFLD and CVD



Mechanisms linking NAFLD to cardiovascular alterations

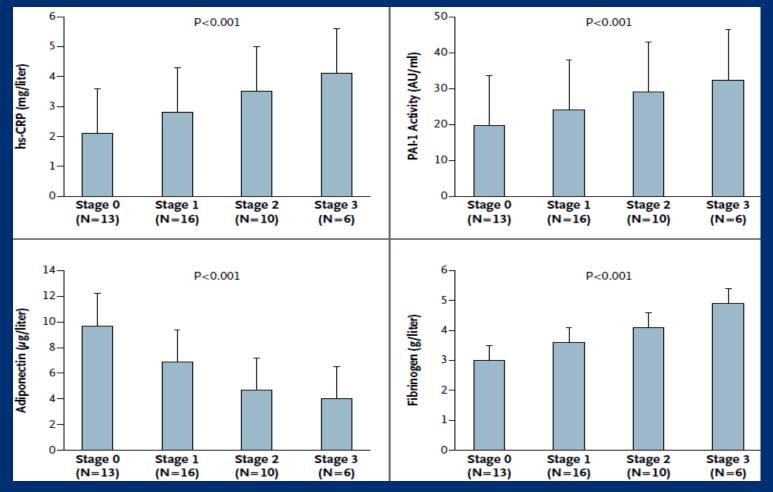
### Association of NAFLD with features of Metabolic Syndrome

Ś





#### Association of NAFLD with features of Metabolic Syndrome

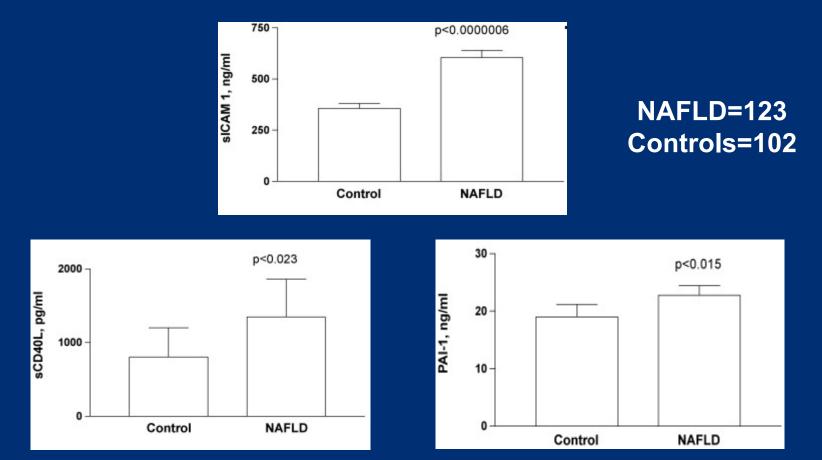

| Prevalence odds ratio (CI) for<br>association with atherogenic dyslipidemia <sup>a</sup>           | Mild NAFLD L/S ratio 1.0–0.7 | Moderate NAFLD L/S ratio 0.7-0.5 | Severe NAFLD L/S ratio <0.5 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|-----------------------------|--|--|--|--|--|
| Low HDL & high triglycerides (HDL < 40 mg/dL in men. <50 mg/dL in women, triglycerides >150 mg/dL) |                              |                                  |                             |  |  |  |  |  |
| Model 1                                                                                            | 2.91 (2.33-3.65)             | 3.68 (2.39-5.68)                 | 6.70 (3.71-12.1)            |  |  |  |  |  |
| Model 2                                                                                            | 2.86 (2.28-5.62)             | 3.64 (2.35-5.62)                 | 6.74 (3.73-12.2)            |  |  |  |  |  |
| Model 3                                                                                            | 1.62 (1,25-2,10)             | 1.87 (1.15-3.03)                 | 3.17 (1.63-6.15)            |  |  |  |  |  |
| Triglyceride/HDL-C ratio >3                                                                        |                              |                                  |                             |  |  |  |  |  |
| Model 1                                                                                            | 3.17 (2.57-3.90)             | 4.07 (2.63-6.29)                 | 6.56 (3.38-12.7)            |  |  |  |  |  |
| Model 2                                                                                            | 3.17 (2.56-3.92)             | 4.23 (2.70-6.65)                 | 7.44 (3.80-14.5)            |  |  |  |  |  |
| Model 3                                                                                            | 1.87 (1.48–2.37)             | 2,28 (1,39-3,73)                 | 3.08 (1.56-6.10)            |  |  |  |  |  |

3362 pts of the MESA Study, free of clinical cardiovascular disease, and assessed for steatosis by TC

DeFilippis et al, Atherosclerosis 2013



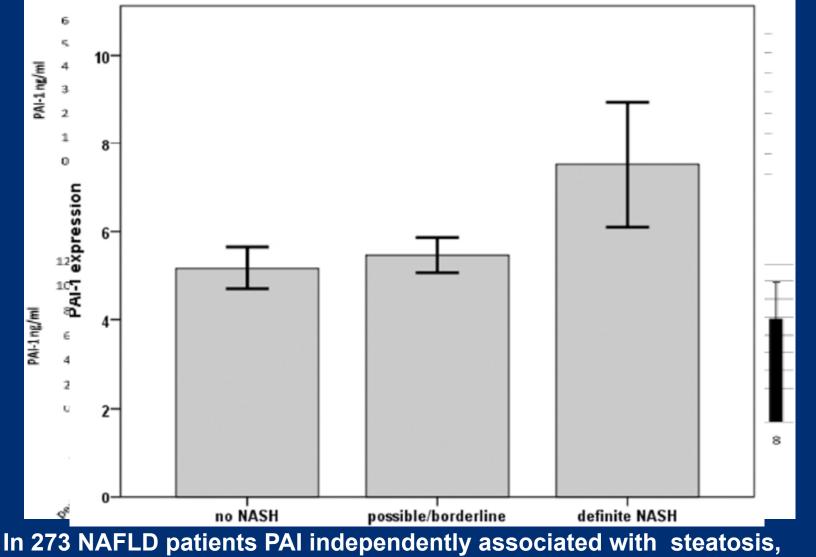
#### Proinflammatory Biomarkers in NAFLD Patients




Proinflammatory biomarkers directly assocuated with fibrosis severity

Targher, NEJM 2011



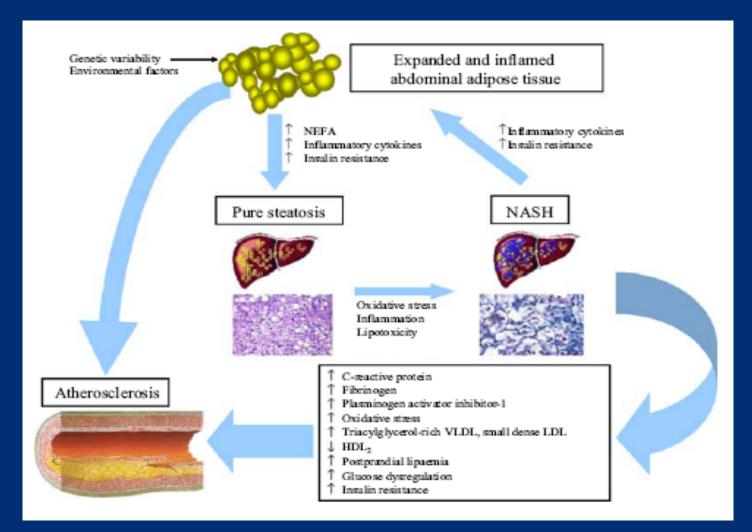

### Molecular Mediators of Atherosclerosis in NAFLD



Liver ICAM-1 expression in the lobular inflammatory infiltrate was associated with the degree of liver steatosis and the the severity of necroinflammatory activity

Sookoian et al, Atherosclerosis 2010

#### Molecular Mediators of Atherosclerosis in NAFLD




fasting C peptide and WC

Verrijken et al, Hepatology in press

# NAFLD and Atherosclerosis: A plausible Hypothesis

Ś





### But....

### Is NAFLD/NASH increasing Atherosclerosis risk, or are other (co)factors?



### **Role of Vitamin D?**

### **Role of Fructose?**

### **Role of Genetic?**



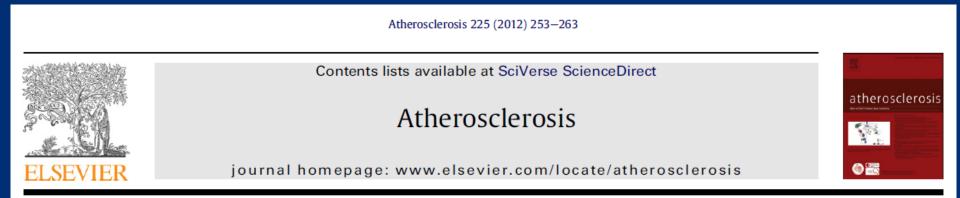
### **Role of Vitamin D?**

### **Role of Fructose?**

### **Role of Genetic?**



#### **NAFLD and 25-hydroxyvitamin D3**


Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats

Shirley Abramovitch,<sup>1</sup> Liora Dahan-Bachar,<sup>1</sup> Efrat Sharvit,<sup>1,2</sup> Yosef Weisman,<sup>2,3</sup> Amir Ben Tov,<sup>1</sup> Eli Brazowski,<sup>2,4</sup> Shimon Reif<sup>2,3</sup> Gut 2012

#### Vitamin D Deficiency in Obese Rats Exacerbates Nonalcoholic Fatty Liver Disease and Increases Hepatic Resistin and Toll-Like Receptor Activation

Christian L. Roth,<sup>1</sup> Clinton T. Elfers,<sup>1</sup> Dianne P. Figlewicz,<sup>2,3</sup> Susan J. Melhorn,<sup>2</sup> Gregory J. Morton,<sup>4</sup> Andrew Hoofnagle,<sup>4</sup> Matthew M. Yeh,<sup>4</sup> James E. Nelson,<sup>5</sup> and Kris V. Kowdley<sup>4,5,6</sup> Hep 2012





#### Review

The role of vitamin D in cardiovascular disease: From present evidence to future perspectives

Vincent M. Brandenburg<sup>a,\*</sup>, Marc G. Vervloet<sup>b</sup>, Nikolaus Marx<sup>a</sup>



## **Role of Vitamin D?**

### **Role of Fructose?**

### **Role of Genetic?**

#### Fructose Consumption and Severity of NAFLD

Ś

|                                                                                                                                                                              | Unadjust                                                         | ted                          | Adjusted (Model 1)                                               |                              | Adjusted (Model 2)                                               |                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|------------------------------------------------------------------|------------------------------|------------------------------------------------------------------|------------------------------|
|                                                                                                                                                                              | OR[95%CI]                                                        | p-value                      | OR[95%CI]                                                        | p-value                      | OR[95%CI]                                                        | p-value                      |
| Steatosis<br>Fructose consumption<br>0 serving<br>0-7 servings<br>>=7 servings                                                                                               | -<br>0.7[0.4, 1.1]<br>0.6[0.4, 1.0]                              | -<br>0.09<br>0.06            | -<br>0.6[0.4, 0.9]<br>0.4[0.2, 0.8]                              | 0.02<br>0.007                | _<br>0.7[0.4, 1.1]<br>0.4[0.2, 0.9]                              | 0.10<br>0.02                 |
| Lobular inflammation<br>Fructose consumption<br>0 serving<br>0-7 servings<br>>=7 servings<br>Ballooning<br>Fructose consumption<br>0 serving<br>0-7 servings<br>>=7 servings | 0.8[0.5, 1.3]<br>0.6[0.4, 1.0]<br>0.7[0.4, 1.1]<br>0.7[0.4, 1.2] | 0.30<br>0.06<br>0.13<br>0.25 | 0.9[0.5, 1.4]<br>0.9[0.5, 1.8]<br>0.9[0.5, 1.4]<br>1.3[0.7, 2.4] | 0.55<br>0.86<br>0.62<br>0.44 | 0.8[0.5, 1.4]<br>1.1[0.6, 2.3]<br>0.9[0.5, 1.5]<br>1.4[0.7, 2.7] | 0.53<br>0.70<br>0.73<br>0.32 |
| Fibrosis<br>Fructose consumption<br>0 serving<br>0-7 servings<br>≥=7 servings                                                                                                | -<br>0.6[0.4, 0.9]<br>0.7[0.4, 1.2]                              | 0.01<br>0.19                 | 0.8[0.5, 1.3]<br>1.7[1.0, 3.2]                                   | 0.44<br>0.07                 | 0.9[0.6, 1.5]<br>2.6[1.4, 5.0]                                   | <br>0.78<br>0.004            |

#### Abdelmalek M et al, Hepatology 2010



Fructose Consumption and Metabolic Syndrome

## The toxic truth about sugar

Added sweeteners pose dangers to health that justify controlling them like alcohol, argue **Robert H. Lustig**, Laura A. Schmidt and Claire D. Brindis.

Hypertension (uric acid)

Myocardial infarction (dyslipidaemia, insulin resistance)

Dyslipidaemia (de novo lipogenesis)

Pancreatitis (hypertriglyceridaemia)

Obesity (insulin resistance)

Malnutrition (obesity)

Hepatic dysfunction (non-alcoholic steatohepatitis)

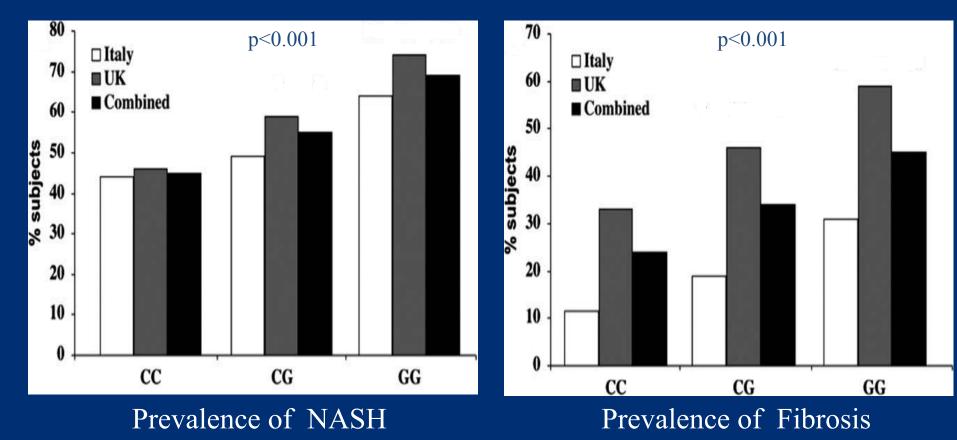
Habituation, if not addiction

Lustig et al, Nature 2012



## **Role of Vitamin D?**

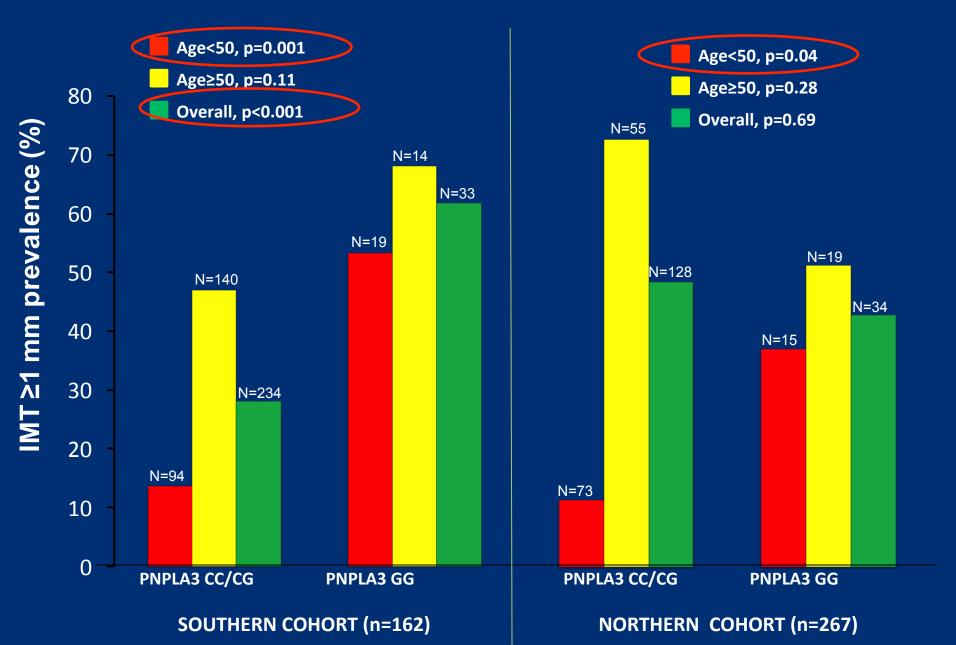
## **Role of Fructose?**


## **Role of Genetic?**

Since NAFLD is the hepatic expression of a systemic metabolic dysorder, SNPs of genes associated with NAFLD could also be linked to cardiovascular alterations in these patients?



### **PNPLA3 and NAFLD**


- Adiponutrin/PNPLA3 is a protein involved in energy mobilization and storage in lipid droplets in the liver and adipose tissue .
- The SNP in adiponutrin rs738409 C>G, encodes the I148M adiponutrin variant protein that is a loss-of function variant that predisposing to steatosis by decreasing triglyceride hydrolysis in hepatocytes

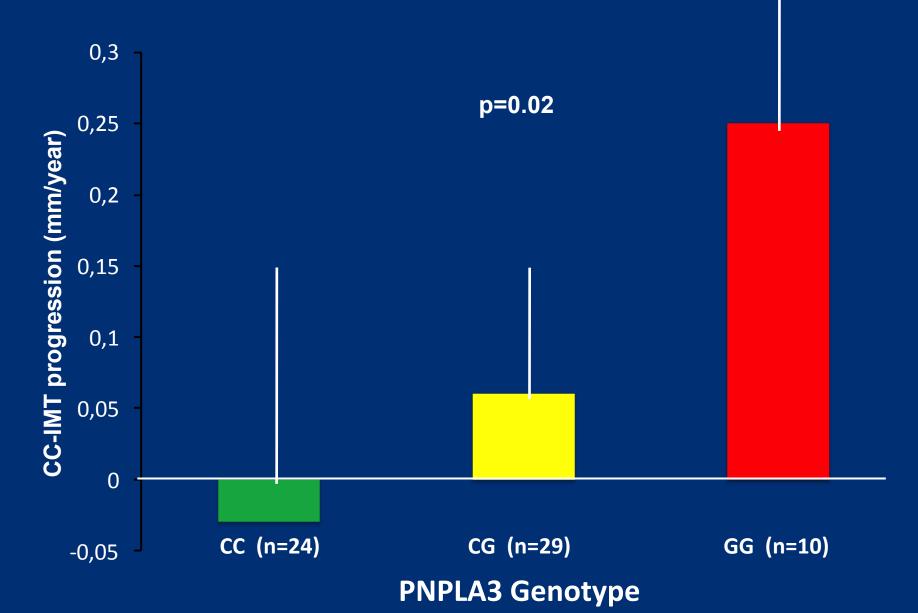


Valenti L et al, Hepatology 2010



#### **Carotid Tickening and PNPLA3**






#### Univariate and multivariate analysis of factors associated with carotid thickening (II)

|                       | iort <50 years<br>88)                               | Northern Cohort <50 years<br>(n=113) |                                                     |      |
|-----------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|------|
| Variable              | Multivariate Analysis<br>OR (95% CI) <i>p</i> value | Variable                             | Multivariate Analysis<br>OR (95% Cl) <i>p</i> value |      |
| Blood Glucose – mg/dL | 1.00 (0.98 – 1.03) 0.41                             | BMI Kg/m2                            | 0.99 (0.93 – 1.07)                                  | 0.94 |
| LDL – mg/dL           | 1.02 (1.00 – 1.04) 0.01                             | LDL mg/dl                            | 1.02 (1.00 – 1.04)                                  | 0.01 |
| PNPLA3 GG             | 7.46 (1.96 –28.3) 0.003                             | PNPLA3 GG                            | 6.00 (1.36 – 29) 🤇                                  | 0.01 |
|                       |                                                     | Ferritin log ng/ml                   | 1.70 (0.90 – 2.06)                                  | 0.12 |
|                       |                                                     | Arterial Hypertension                | 1.18 (0.24 – 7.74)                                  | 0.84 |



#### **Carotid IMT progression and PNPLA3**





### **PNPLA3**

Apoptosis ICAM Arterial lipid storage



#### **Metabolic factors**



### Conclusions

Mounting evidence suggests an increased rate of atherosclerosis-related alterations in patients with NAFLD

Severity of NAFLD has been associated with the severity of atherosclerosis

Further evidences are needed to establish if NAFLD is only a marker of higher metabolic dysfunctions, or a direct pathogenic trigger for cardiovascular alterations