Laboratorio di Ottica e Spettroscopia

Quarta lezione Applicazione di tecniche di diffrazione (Laboratorio II)

> Antonio Maggio e Luigi Scelsi Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo

Sommario 4ª lezione

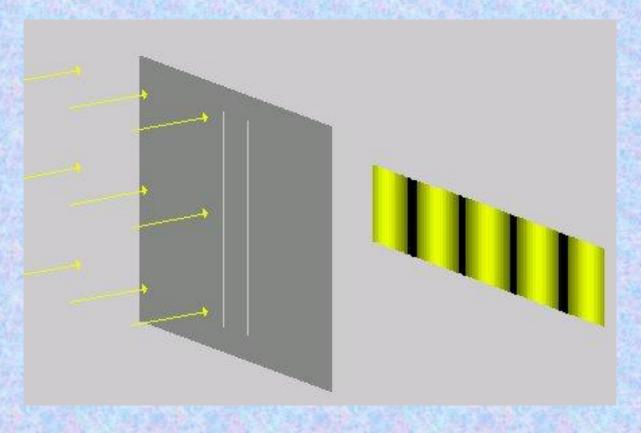
Prima parte

- Riassunto dei principi di diffrazione e interferenza
- Descrizione delle esperienze da svolgere (Laboratorio II)
- Cenni di teoria della misura (incertezze su grandezze derivate)

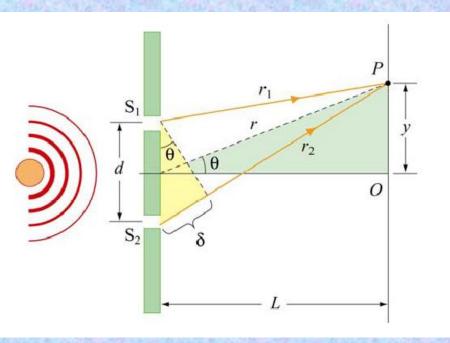
Seconda parte

- Svolgimento delle esperienze

Il principio di Huygens


- La luce si propaga come un'onda: ogni punto raggiunto da un fronte d'onda, generata da una sorgente primaria, si comporta come una sorgente (secondaria) puntiforme di luce con le stesse caratteristiche (lunghezza d'onda, velocità di propagazione e fase).
- · La composizione di tutte le onde secondarie genera il fronte d'onda successivo.

Principio di sovrapposizione e interferenza

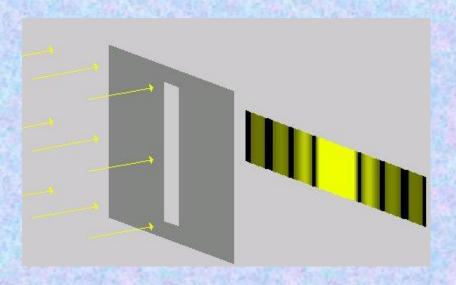

- Il segnale generato da due onde che si incontrano in un punto dello spazio ad un certo tempo è data dalla somma algebrica delle ampiezze dei segnali delle due onde
- Un'onda che mantiene nel tempo la stessa fase si dice coerente
- Un'onda caratterizzata da una singola lunghezza d'onda (o frequenza) si dice monocromatica
- · La sovrapposizione di onde monocromatiche e coerenti genera una *figura d'interferenza*

Esperienza di Young

- Sommando la luce proveniente da due sorgenti (fenditure) vicine tra loro si ottiene una figura composta da *frange d'interferenza*

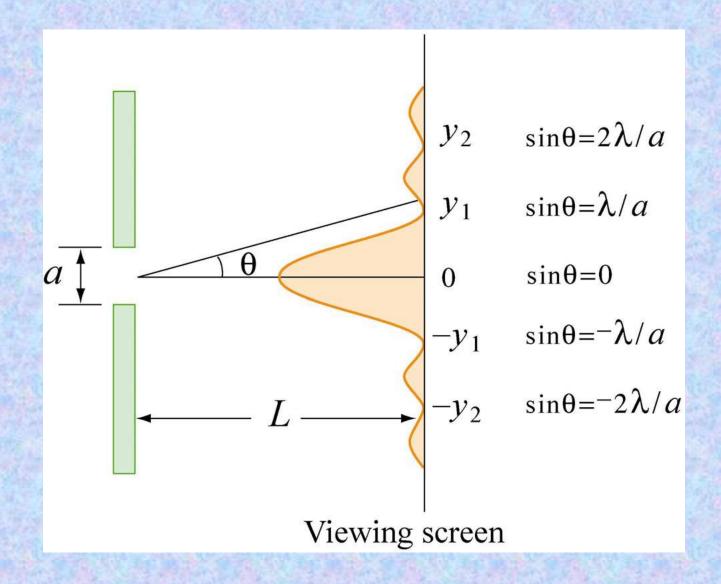
Interpretazione dell'esperienza di Young

 La distanza del punto P dall'asse è


$$y = L tg \theta$$

- Si verifica <u>interferenza</u> <u>costruttiva</u> nei punti P dove **sen** $\theta = \delta/d = m\lambda/d$ con $(m = 0, \pm 1, \pm 2, ...)$
- Si verifica <u>interferenza</u> <u>distruttiva</u> nei punti P dove

sen
$$\theta = \delta/d = (m + \frac{1}{2}) \lambda/d$$


A. Maggio

Esperienze di diffrazione

 Se si usa una sorgente monocromatica (laser) e la fenditura è abbastanza stretta, si crea una figura di diffrazione

Diffrazione da singola fenditura

Diffrazione: alcune formule

 Condizione per il primo minimo (frangia scura) in una figura di diffrazione da una fenditura di ampiezza a:

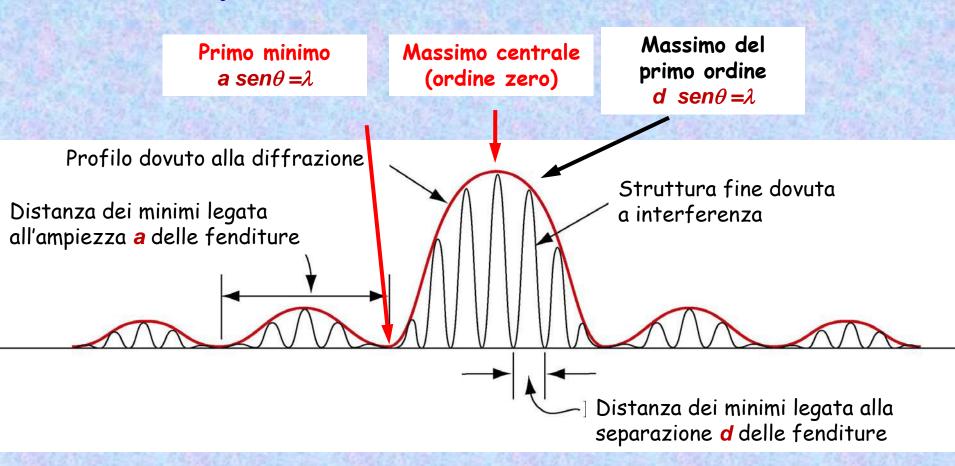
a sin $\theta = \lambda$ (θ è l'angolo rispetto all'orizzontale)

- Se θ (in radianti) è piccolo sin $\theta \approx \theta$ quindi $\theta \approx \lambda /a$
- Ampiezza angolare della frangia centrale generata dalla fenditura:

$$2\theta \approx 2\lambda/a$$

 Distanza tra i due minimi d'intensità su uno schermo a distanza L dalla fenditura

$$D = 2 L tg \theta \approx 2 L \theta$$


Principio di Babinet

- La figura di diffrazione generata da un qualunque ostacolo opaco (di dimensione confrontabile con la lunghezza d'onda della radiazione incidente) è la stessa della figura di diffrazione generata da una barriera con un'apertura della stessa forma e dimensione dell'ostacolo
- · Spiegazione qualitativa:
 - Una fenditura genera diffrazione
 - Se copro la fenditura ottengo zero segnale trasmesso
 - Se tolgo tutto tranne il rettangolo della fenditura ottengo di nuovo diffrazione
 - Per ottenere zero nel secondo caso, i segnali nel primo e terzo caso devono essere uguali e opposti

 $E_{\text{fenditura}} = -E_{\text{barriera}}$

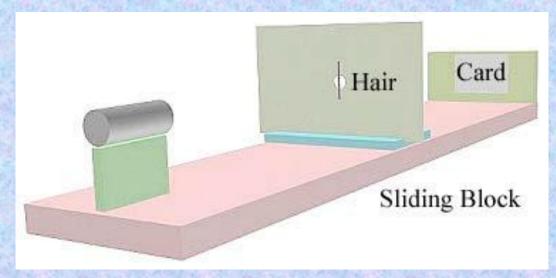
 Siccome l'intensità è proporzionale al quadrato del segnale, sarà identica nel primo e nel terzo caso

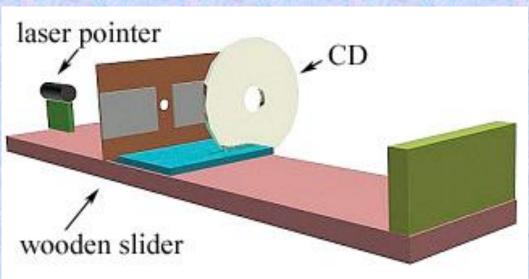
Caso generale: due fenditure di ampiezza non trascurabile

Diffrazione da un sistema di fenditure

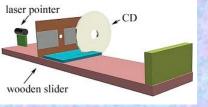
- Una serie di numerose fenditure (o solchi) finemente spaziate costituisce un reticolo di diffrazione
- Ciascuna delle fenditure (o solchi), quando viene illuminato da radiazione monocromatica coerente, diventa a sua volta una sorgente (principio di Huygens); tutti i segnali si sommano (con il segno stabilito dalla fase) quando raggiungono lo schermo (rivelatore)

· Condizione per l'interferenza costruttiva lungo la

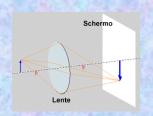

direzione di dispersione:


 $d \operatorname{sen} \theta = m \lambda \operatorname{con} m = 0, \pm 1, \pm 2, \dots (\operatorname{ordini} \operatorname{spettrali})$

• Conoscendo la lunghezza d'onda A della radiazione del laser, dalla misura degli angoli 0 per i quali si verifica interferenza costruttiva è possibile ricavare la separazione d delle fenditure (o dei solchi)


 Effettuare l'esperienza prima con un CD-ROM e poi con un DVD. Quanto diversa è la spaziatura dei solchi?

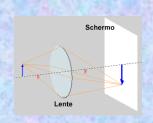
Laboratorio II



Conoscendo la lunghezza d'onda 1, dalle misure della distanza dell'oggetto dallo schermo, L, e delle posizioni delle frange di diffrazione, ym, possiamo ricavare la dimensione dell' oggetto (spessore del capello o spaziatura dei solchi del CD-ROM

Laboratorio II

- Primo passo: "spellare" un CD-ROM e ritagliarne un frammento vicino al bordo (1 - 2 cm di larghezza); posizionarlo davanti al laser
- Secondo passo: misurare la distanza L del campione dallo schermo e la distanza y_m degli ordini $m = \pm 1, \pm 2$ dall'asse (ordine zero); ripetere le misure utilizzando i laser verde e rosso; ripetere l'esperienza con un frammento di DVD
- Terzo passo: Derivare la spaziatura dei solchi utilizzando le formule della diffrazione da un reticolo e stimare l'incertezza sulla misura



Relazione sull'esperienza

Titolo: Misura di oggetti microscopici tramite tecniche di diffrazione

Autori: Nome, cognome e classe dei membri del gruppo

- · Descrivete in breve la motivazione scientifica (diffrazione della luce)
- · Descrivete in una frase lo scopo dell'esperienza
- · Ponete un'eventuale domanda a cui rispondere
- · Svolgimento:
 - Descrizione dell'attrezzatura
 - Descrizione degli oggetti da misurare (cosa, quanti esemplari, scelti come, ecc.)
 - Descrizione delle modalità di misura
 - Metodo di valutazione delle incertezze sulle misure e sulle quantità derivate
- · Risultati:
 - Tabella delle misure
 - Calcolo delle grandezze e quantità derivate
 - Confronto dei risultati per i vari esemplari
- · Conclusione: sintesi dei risultati e risposta sintetica alla domanda.

Tabella dei risultati

Oggetto (CD-ROM o DVD)	Osservatore	Distanza oggetto- schermo (L)	Distanze dei vari ordini dall'asse (y _m)	Valori medi e incertezze
1, 2, 3,, N	Marco			
	Giovanni			<v> + ^ V</v>
	Enrico			$\langle y_m \rangle \pm \Delta y_m$
	ecc.			