

1

Controlled fermentation and sludge							
Sludge Type	Total Volatile Solid (gTVS/L)	Max VFAs production efficiency (mgCOD/gTVS fed)	HPr percentage (%)	Initial fermentation pH	Temperature (°C)		
Primary sludge (PS)	20-25	250-270	30-35	5-8	37		
Mixed sludge (PS&WAS*)	25-35	250-270	25-30	8-9	37		
Waste Activated Sludge* (WAS)	45-50	250-270	10-25	>9	37		
Cellulosic sludge *after dynami	40-50 c thickening w	300-340 ith screw drum	12-33	7.5-8	37		
O O							

Comparison of the via nitrite with the via nitrate EBPR

- Guisasola et al. (2009) found a higher anoxic NUR/PUR ratio for the via nitrite EBPR compared to the respective ratio found in literature for the via nitrate EBPR. Since the energy obtained from the denitrification of one mole of nitrite is lower than the respective one for one mole of nitrate a higher amount of nitrite is required to uptake 1 mole of phosphate.
- Lee et al. (2001) found that PUR was higher when nitrite was the electron acceptor rather than nitrate.
- Martín et al. (2006) showed that the dominant DPAOs of Accumulibacter used nitrite instead of nitrate as electron acceptor.
- Peng et al. (2011) found that the short-cut nutrients removal process could save more than 22.3% and 49.4% of poly-b-hydroxyalkanoate (PHA) for phosphorus and nitrogen removal respectively compared to the conventional BNR process when a real-time step feed was employed. Innovative wastewater treatment technologies for energy saving and environmental protection DICAM May 20, 2016 - Palermo

IWA

UB

vNLR (gN/m³d)	530±11
Total vOLR (gCOD/m ³ d)	1394±112
vOLR _{VFA} (gCOD _{VFA} /m³d)	1166±106
HRT (d)	0.8±0.1
COD/N (gCOD _{VFA} :gNH ₄ -N)	2.2±0.1
F/M (gCOD _{VFA} :gX _a)	0.37±0.07
Aerobic reaction time/Anoxic reaction time ratio	0.20
Feast/Famine ratio	0.13

PHA accumulation						
Parameter	Synthetic mixture of VFA	WSFL	SFL			
Duration of accumulation	8.5	8.5	8.5			
COD _{VFA} :NH ₄ -N:PO ₄ -P	100:0:0	100:7.8:0.06	100:9.7:2.1			
Initial NH ₄ -N/ Final NH ₄ -N (mgN/L)	35.7/27.2	20.1/185.5	35.2/146.5			
Initial PO ₄ -P/Final PO ₄ -P (mgP/L)	12.5/8.4	11.6/8.1	25.4/45.3			
%PHAs (gPHA/gVSS x 100)	44±5%	21±2%	19±2%			
HAc/HPr (gCOD/gCOD)	1.4	1.1	1.1			
3HB (%)	60	57	56			
3HV (%)	35	41				
2HH (%)	5	2	2			
Y _{PHA/VFA} (gCOD/gCOD)	0.46±0.06	0.40±0.04	0.40±0.04			
Y _{X/VFA} (gCOD/gCOD)	0.26±0.02	0.25±0.09	0.23±0.06			
We we were a structure wastewater treatment technologies for energy soving and environmental protection of DICAM May 20, 2016 - Palermo						

Main properties of the biopolymers obtained with the different carbon							i
sources after the accumulation tests							S
Carbon cource	M _w	PDI	T_{g}	T _{m1}	T _{m2}	ΔHm	T _{d-trans}
Carbon source	(g/mol)	(Mw/Mn)	(°C)	(°C)	(°C)	(J/g)	(°C)
Synthetic mixture of VFA	6.2x10 ⁵	1.30	-1.1	138	147	21	267
SFL	6.5x10 ⁵	1.29	-0.5	136	144	24	275
WSFL	7.4x10 ⁵	1.25	-1.6	141	153	27	276
m _w : average molecular weight, PDI: _F (DSC analyses); T _g : glass-transition ter	nperature; T _n	index; M _n : mola	for energy	r; i _{d-trans} ; ΔH _m : m	elting e	position t nthalpy. ht technologies ental protection	emperature

Comparison of the performance and energy consumption of SCEPPHAR with the complete aerobic PHA production process					
Parameter	Unit	This study	Complete aerobic		
			PHA production		
Total PHA produced (60 %HB, 40% HV)	kgPHA/d	1.0	1.0		
Total VFA needed (Selection and Accumulation)	kgCOD/d	16.5	16.5		
Overall Yield of PHA production $(Y_{PHA/VFA})$	kgCOD/kgCOD	0.11	0.11		
Yield of oxygen consumption (Y _{Oxygen/PHA})	kgO ₂ /kgCOD	106.2	165.1		
Electrical energy consumption (Y _{kwh/PHA})	kwh/kgCOD	23.6	36.7		
(i) (ii) (iii)(iii) (iii) (iii)(iii) (iii)(iii) (iii) (iii)(iii) (iii)(ii	Innovative for energy May 20, 20	wastewater treatment saving and environment 116 - Palermo	technologies tai protection		

