



# WWTP modelling



Hydraulic model

- Deduced from mass balances
- Depends on each WWTP
- Kinetic model
  - Rate equations
  - Common for similar processes

The most common kinetic models have been developed by workgroups of the **International Water Association (IWA)** and are known as **Activated Sludge Models (ASM)**. The most used models are:

| ASM1  | COD + N                                                  |
|-------|----------------------------------------------------------|
| ASM2d | COD+ N + P                                               |
| ASM3  | COD + N with COD accumulation by heterotrophic organisms |
| ADM1  | Anaerobic digestion of COD                               |

These models take into account different types of microorganisms and numerous substrates and products. Usually they are described using a matrix notation.



|                          | <b>.</b>                             |                          |                                                                                            |                                                                                                           | Activated sludge: |
|--------------------------|--------------------------------------|--------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------|
|                          |                                      |                          |                                                                                            | inetic parameters of ASM2d                                                                                |                   |
|                          |                                      | 315 of pt<br>3.00        | nticulate substrate: X <sub>S</sub><br>d <sup>-1</sup>                                     | ** 1 1 *                                                                                                  | 100 plus 1 years  |
|                          | K <sub>H</sub>                       | 0.60                     | a                                                                                          | Hydrolysis rate constant                                                                                  | UNIVERSITÀ        |
|                          | n <sub>NO3</sub>                     | 0.40                     |                                                                                            | Anoxic hydrolysis reduction factor<br>Anaerobic hydrolysis reduction factor                               | New trends and    |
|                          | n <sub>fe</sub><br>Koz               | 0.20                     | $z O_2/m^3$                                                                                | Saturation/inhibition coefficient for oxygen                                                              | • perspectives    |
|                          | K <sub>N02</sub>                     | 0.20                     | g N/m <sup>3</sup>                                                                         | Saturation/inhibition coefficient for nitrate                                                             |                   |
|                          | K <sub>NO3</sub><br>K <sub>X</sub>   | 0.10                     | g X <sub>S</sub> (gX <sub>H</sub> ) <sup>-1</sup>                                          | Saturation/inition coefficient for nitrate                                                                |                   |
|                          |                                      |                          | rganisms: XR                                                                               | Saturation coefficient for particulate COD                                                                |                   |
|                          |                                      | 6.00                     | g X <sub>S</sub> (gX <sub>R</sub> ) <sup>-1</sup> d <sup>-1</sup>                          | Maximal growth rate on substrate                                                                          |                   |
|                          | u <sub>H</sub>                       | 3.00                     | g X <sub>S</sub> (gX <sub>H</sub> ) <sup>-1</sup> d <sup>-1</sup>                          | Maximal growth rate on substrate<br>Maximal fermentation rate                                             |                   |
|                          | Qfe                                  | 0.80                     | B Y2 (BYH) g                                                                               | Reduction factor for denitrification                                                                      |                   |
|                          | n <sub>NO3</sub>                     | 0.40                     | d-1                                                                                        | Lysis rate constant                                                                                       |                   |
|                          | b <sub>H</sub><br>K <sub>02</sub>    | 0.20                     | g O <sub>2</sub> /m <sup>3</sup>                                                           | Saturation/inhibition coefficient for oxygen                                                              |                   |
|                          | K <sub>02</sub><br>K <sub>F</sub>    | 4.00                     | g COD m <sup>-3</sup>                                                                      | Saturation coefficient for growth on SF                                                                   |                   |
|                          | K <sub>F</sub>                       | 4.00                     | g COD m <sup>-3</sup>                                                                      | Saturation coefficient for growin on SF                                                                   |                   |
|                          | K <sub>fe</sub><br>K <sub>A</sub>    | 4.00                     | g COD m <sup>3</sup>                                                                       | Saturation coefficient for acetate                                                                        |                   |
|                          | K <sub>NO3</sub>                     |                          | gCODm<br>gNm <sup>-3</sup>                                                                 | Saturation coefficient for acetate<br>Saturation/inhibition coefficient for nitrate                       |                   |
|                          | K <sub>N03</sub><br>K <sub>NH4</sub> | 0.50                     | gNm <sup>-</sup><br>zNm <sup>-3</sup>                                                      | Saturation/inhibition coefficient for nitrate<br>Saturation coefficient for SNH4 as nutrient              |                   |
|                          |                                      |                          |                                                                                            | Saturation coefficient for SPO4 as nutrient                                                               |                   |
|                          | Kp                                   | 0.01                     | g P m <sup>-3</sup>                                                                        |                                                                                                           |                   |
|                          | KALK                                 |                          | mole HCO <sup>3-</sup> m <sup>-3</sup>                                                     | Saturation coefficient for alkalinity                                                                     |                   |
|                          |                                      |                          | umulating organisms: X <sub>PAO</sub>                                                      | D                                                                                                         |                   |
|                          | <b>Q</b> PHA                         | 3.00                     | (g X <sub>PHA</sub> (g X <sub>PAO</sub> ) <sup>-1</sup> d <sup>-1</sup>                    | Rate constant for storage of XPHA                                                                         |                   |
|                          | <b>Q</b> PP                          | 1.50                     | (g X <sub>PHA</sub> (g X <sub>PAO</sub> ) <sup>-1</sup> d <sup>-1</sup><br>d <sup>-1</sup> | Rate constant for storage of XPP                                                                          |                   |
|                          | uPAO                                 | 1.00                     | a '                                                                                        | Maximum growth rate of XPAO<br>Reduction factor under anoxic conditions                                   |                   |
|                          | n <sub>NO3</sub>                     | 0.60                     | d <sup>-1</sup>                                                                            |                                                                                                           |                   |
|                          | <b>b</b> PAO                         | 0.20                     | a<br>d <sup>-1</sup>                                                                       | Rate for lysis of XPAO                                                                                    |                   |
|                          | bpp                                  | 0.20                     | d-1                                                                                        | Rate for lysis of XPP                                                                                     |                   |
|                          | <b>b</b> <sub>PHA</sub>              | 0.20                     |                                                                                            | Rate for lysis of XPHA                                                                                    |                   |
|                          | K <sub>02</sub><br>K <sub>N03</sub>  | 0.50                     | g O <sub>2</sub> m <sup>-3</sup><br>g N m <sup>-3</sup>                                    | Saturation coefficient for oxygen<br>Saturation coefficient for nitrate                                   |                   |
|                          | K <sub>NO3</sub>                     | 4.00                     | g COD m <sup>-3</sup>                                                                      | Saturation coefficient for intrate                                                                        |                   |
|                          | K <sub>NH4</sub>                     | 0.05                     | gNm <sup>3</sup>                                                                           | Saturation coefficient for acetate                                                                        |                   |
|                          | K <sub>NH4</sub><br>K <sub>P</sub>   | 0.05                     | g P m <sup>-3</sup>                                                                        | Saturation coefficient for ammonium<br>Saturation coefficient for phosphate for XPP formation             |                   |
|                          | K <sub>PO4</sub>                     | 0.20                     | g P m <sup>-3</sup>                                                                        | Saturation coefficient for phosphate for APP formation<br>Saturation coefficient for phosphate for growth |                   |
|                          | K <sub>ALK</sub>                     | 0.10                     | mole HCO <sup>3-</sup> m <sup>-3</sup>                                                     | Saturation coefficient for phosphate for growin<br>Saturation coefficient for alkalinity                  |                   |
|                          | K <sub>ALK</sub><br>K <sub>pp</sub>  | 0.10                     | g Xpp(g XpAQ) <sup>-1</sup>                                                                | Saturation coefficient for alkalinity<br>Saturation coefficient for polyphosphate                         |                   |
|                          | KMAX                                 | 0.34                     | g X <sub>PP</sub> (g X <sub>PAO</sub> )-1                                                  | Maximum ratio of XPP/XPAO                                                                                 |                   |
|                          | KIPP                                 | 0.02                     | g Xpp(g XpAO)-1<br>g Xpp(g XpAO)-1                                                         | Inhibition coefficient for polyphosphate storage                                                          |                   |
|                          | K <sub>PHA</sub>                     | 0.02                     | g Xpp(g XpAO)-1<br>g Xpha(g XpAO)-1                                                        | Saturation coefficient for PHA                                                                            |                   |
|                          |                                      |                          | isms (autotrophic organisms)                                                               |                                                                                                           |                   |
|                          |                                      | 1 <u>g organ</u><br>1.00 | d-1<br>d-1                                                                                 | Maximal growth rate of autotrophic biomass                                                                |                   |
|                          | u <sub>AUT</sub>                     | 0.15                     | d-1                                                                                        | Decay rate if autotrophic biomass                                                                         |                   |
|                          | K <sub>02</sub>                      |                          | $g O_2 m^{-3}$                                                                             | Saturation/inhibition coefficient for oxygen                                                              |                   |
|                          | K <sub>02</sub><br>K <sub>NH4</sub>  | 1.00                     | g N m <sup>-3</sup>                                                                        | Saturation/infibition coefficient for oxygen<br>Saturation coefficient for SNH4                           |                   |
|                          | K <sub>ALK</sub>                     | 0.50                     | mole HCO <sup>3-</sup> m <sup>-3</sup>                                                     | Saturation coefficient for SIG14                                                                          |                   |
|                          | KALK                                 |                          | g P m <sup>-3</sup>                                                                        | Saturation coefficient for SPO4                                                                           |                   |
|                          |                                      |                          | horus removal                                                                              | Saturation coefficient for 5PO4                                                                           |                   |
|                          |                                      | <u>ai phosp</u><br>1.00  | m <sup>3</sup> (gFe(OH) <sub>3</sub> ) <sup>-1</sup> d <sup>-1</sup>                       | Pote constant for Doministration                                                                          |                   |
|                          | k <sub>PRE</sub>                     | 0.60                     | m <sup>-</sup> (gFe(OH) <sub>3</sub> ) <sup>-</sup> d <sup>-1</sup>                        | Rate constant for P precipitation<br>Rate constant for redissolution                                      |                   |
|                          | k <sub>RED</sub>                     |                          | nole HCO <sup>3-</sup> m <sup>-3</sup>                                                     | Saturation coefficient for alkalinity                                                                     |                   |
|                          | K <sub>ALK</sub>                     | 0.50                     | more rico m                                                                                | Saturation coefficient for analimity                                                                      |                   |
| Biological nutrient remo | val: ma                              | them                     | atical modelling as a                                                                      | a good strategy for control system design                                                                 | (J.A. Baeza)      |



|   |                                                |                         |                    |                      |                             |                                 |                    |                            |                     |                                |                            |                  |    |      |                   | UNIVER<br>DECLI ST<br>DI PALER | -    | ) plus             | New tre           | -     |
|---|------------------------------------------------|-------------------------|--------------------|----------------------|-----------------------------|---------------------------------|--------------------|----------------------------|---------------------|--------------------------------|----------------------------|------------------|----|------|-------------------|--------------------------------|------|--------------------|-------------------|-------|
|   | Table A3. Stoichiom                            | etry matrix f           | ior ASM            | E2d (v <sub>ij</sub> | )                           |                                 |                    |                            |                     |                                |                            |                  |    |      |                   |                                |      |                    |                   |       |
| j | i: Process                                     | S <sub>02</sub>         | S <sub>7</sub>     | S <sub>A</sub>       | S <sub>NH4</sub>            | S <sub>NO8</sub>                | S204               | \$ <sub>1</sub>            | SALK                | Sm                             | X                          | Xs               | Xg | XPAO | Xn                | XPRA                           | XAUT | X <sub>TSS</sub>   | X <sub>M+OH</sub> | Хма   |
|   | Aerobic hydrolysis                             | 1                       | $1-f_{\rm SI}$     |                      | V <sub>1,NH4</sub>          |                                 | v <sub>1,P04</sub> | $\mathbf{f}_{\mathrm{SI}}$ | VLALK               |                                |                            | -1               |    |      |                   |                                |      | V <sub>1,TSS</sub> |                   |       |
|   | Anoxic hydrolysis                              | 1                       | 1-f <sub>st</sub>  |                      | V2,NH4                      |                                 | V2,P04             | fst                        | V2,ALK              |                                |                            | -1               |    |      |                   |                                |      | V2,TSS             |                   |       |
|   | Anaerobic hydrolysis                           | 1                       | 1-f <sub>st</sub>  |                      | V <sub>3,NH4</sub>          |                                 | v <sub>3,PO4</sub> | $\mathbf{f}_{\mathrm{SI}}$ | V <sub>3,ALK</sub>  |                                |                            | -1               |    |      |                   |                                |      | v <sub>3,TSS</sub> |                   |       |
|   | Aerobic growth on $\mathrm{S}_\mathrm{F}$      | $1 - \frac{1}{Y_H}$     | $-\frac{1}{Y_H}$   | ,                    |                             |                                 | -IP,BM             |                            |                     |                                |                            |                  | 1  |      |                   |                                |      |                    |                   |       |
|   | Aerobic growth on ${\rm S}_{\rm A}$            | $1 - \frac{1}{Y_H}$     |                    | $-\frac{1}{Y_H}$     |                             |                                 | -ір,вм             |                            |                     |                                |                            |                  | 1  |      |                   |                                |      |                    |                   |       |
|   | Anoxic growth on $S_{\rm F}$ , denitrification |                         | $-\frac{1}{Y_{H}}$ |                      |                             | $-\frac{1-Y_H}{2.86 \cdot Y_H}$ | -i <sub>P,BM</sub> |                            |                     | $\frac{1-Y_H}{2.86 \cdot Y_H}$ |                            |                  | 1  |      |                   |                                |      |                    |                   |       |
|   | Anoxic growth on $S_A$ , denitrification       |                         |                    | $-\frac{1}{Y_H}$     |                             | $-\frac{1-Y_H}{2.86 \cdot Y_H}$ | -i <sub>P,BM</sub> |                            |                     | $\frac{1-Y_H}{2.86 \cdot Y_H}$ |                            |                  | 1  |      |                   |                                |      |                    |                   |       |
|   | Fermentation                                   |                         | -1                 | 1                    |                             |                                 |                    |                            |                     |                                |                            |                  |    |      |                   |                                |      |                    |                   |       |
|   | Lysis                                          |                         |                    |                      |                             |                                 |                    |                            |                     |                                | $\mathbf{f}_{\mathrm{NI}}$ | $1-f_{33}$       | -1 |      |                   |                                |      |                    |                   |       |
| ) | Storage of X <sub>PHA</sub>                    |                         |                    | -1                   |                             |                                 | Y <sub>PO4</sub>   |                            |                     |                                |                            |                  |    |      | -Y <sub>P04</sub> | 1                              |      |                    |                   |       |
| L | Aerobic storage of X <sub>PP</sub>             | -Y <sub>PHA</sub>       |                    |                      |                             |                                 | -1                 |                            |                     |                                |                            |                  |    |      | 1                 | -Y <sub>PHA</sub>              |      |                    |                   |       |
| 2 | Anoxic storage of X <sub>PP</sub>              |                         |                    |                      |                             | V12,N03                         | -1                 |                            |                     | -V12,N03                       |                            |                  |    |      | 1                 | -YPHA                          |      |                    |                   |       |
| 3 | Aerobic growth X <sub>PAO</sub>                | $v_{13,02}$             |                    |                      |                             |                                 | -i <sub>P,BM</sub> |                            |                     |                                |                            |                  |    | 1    |                   | $-\frac{1}{Y_{PAO}}$           |      |                    |                   |       |
|   | Anoxic growth $X_{PAO}$                        |                         |                    |                      |                             | V14,N03                         | -i <sub>P,BM</sub> |                            |                     | -V14,N03                       |                            |                  |    | 1    |                   | $-\frac{1}{Y_{PAO}}$           |      |                    |                   |       |
|   | Lysis of XPAO                                  |                         |                    |                      |                             |                                 | V15,P04            |                            |                     |                                | fx                         | 1-f <sub>M</sub> |    | -1   |                   | * PAO                          |      |                    |                   |       |
| 5 | Lysis of Xpp                                   |                         |                    |                      |                             |                                 | 1                  |                            |                     |                                |                            |                  |    |      | -1                |                                |      |                    |                   |       |
| , | Lysis of X <sub>PHA</sub>                      |                         |                    | 1                    |                             |                                 |                    |                            |                     |                                |                            |                  |    |      |                   | -1                             |      |                    |                   |       |
| 8 | Aerobic growth of $X_A$                        | $-\frac{4.57-Y_A}{Y_A}$ |                    |                      | $-i_{N,BM} - \frac{1}{T_A}$ | $\frac{1}{Y_A}$                 | -i <sub>P,BM</sub> |                            | VIRALK              |                                |                            |                  |    |      |                   |                                | 1    |                    |                   |       |
| , | Lysis of X <sub>A</sub>                        |                         |                    |                      | V19,NH4                     |                                 | V19,P04            |                            |                     |                                | $\mathbf{f}_{NI}$          | $1-f_{\rm NI}$   |    |      |                   |                                | -1   |                    |                   |       |
| ) | Precipitation                                  |                         |                    |                      |                             |                                 | -1                 |                            | V <sub>20,ALK</sub> |                                |                            |                  |    |      |                   |                                |      | 1.42               | -3.45             | 4.87  |
| l | Redissolution                                  |                         |                    |                      |                             |                                 | 1                  |                            | V21,ALK             |                                |                            |                  |    |      |                   |                                |      | -1.42              | 3.45              | -4.87 |



|                       | wv        | VTP n          |                             | SM2d calibrat                                                             |                             | Activated sludge<br>100 plus 1 years<br>New trends and<br>perspectives                         |
|-----------------------|-----------|----------------|-----------------------------|---------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------|
| Plant o               | lata.     |                |                             | ASM2d state v                                                             | ariable                     | es:                                                                                            |
| Plant                 | iata:     |                | Symbol                      | Description                                                               | Symbol                      | Description                                                                                    |
| 0.01                  |           |                | $\mathbf{S}_{\mathrm{O2}}$  | Dissolved oxygen concentration, [g O <sub>2</sub> m <sup>-3</sup> ]       | $\mathbf{X}_{\mathbf{S}}$   | Slowly biodegradable substrates,<br>[g COD m <sup>-3</sup> ]                                   |
| COL                   | )         |                | $\mathbf{S}_{\mathrm{F}}$   | Readily biodegradable soluble organic substrate, [g COD m <sup>-3</sup> ] | $X_{\rm H}$                 | Heterotrophic organisms, [g COD m-3]                                                           |
| BOD                   | 5         |                | $\mathbf{S}_{\mathrm{A}}$   | Fermentation products VFA,<br>[g COD m <sup>-3</sup> ]                    | $X_{PAO}$                   | Phosphorus accumulating organisms,<br>[g COD m <sup>-3</sup> ]                                 |
| TKN                   | 1         |                | $S_{I}$                     | Inert soluble organic material,[g COD m <sup>-3</sup> ]                   | $\mathbf{X}_{\text{PP}}$    | Polyphosphate, [g P m <sup>-3</sup> ]                                                          |
| NH                    |           |                | $\mathbf{S}_{\mathrm{NH4}}$ | Ammonium plus ammonia<br>nitrogen, [g N m <sup>-3</sup> ]                 | $\mathbf{X}_{\text{PHA}}$   | Cell internal storage product of PAO,<br>[g COD m <sup>-3</sup> ]                              |
| NO                    |           |                | $S_{N2}$                    | Gaseous nitrogen, [g N m <sup>-3</sup> ]                                  | $\mathbf{X}_{\mathrm{AUT}}$ | Nitrifying organisms, [g COD m <sup>-3</sup> ]                                                 |
|                       | •         |                | $\mathbf{S}_{\mathrm{NO3}}$ | Nitrate plus nitrite nitrogen,<br>[g N m <sup>-3</sup> ]                  | $\mathbf{X}_{\text{TSS}}$   | Total suspended solids, TSS,<br>[g TSS m <sup>-3</sup> ]                                       |
| PO,<br>VSS            |           |                | $\mathbf{S}_{\mathrm{PO4}}$ | Inorganic soluble phosphorus,<br>[g P m <sup>-3</sup> ]                   | $\rm X_{MeOH}$              | Metal-hydroxides, involved with<br>chemical removal of phosphorus,<br>[g TSS m <sup>-3</sup> ] |
| тรร                   | 5         |                | $S_{ALK} \\$                | Alkalinity of the wastewater,<br>[mol HCO <sub>3</sub> m <sup>-3</sup> ]  | $\mathbf{X}_{\mathrm{MeP}}$ | Metal phosphate, [g TSS m <sup>-3</sup> ]                                                      |
|                       |           | _              | X <sub>I</sub>              | Inert particulate organic<br>material, [g COD m <sup>-3</sup> ]           |                             |                                                                                                |
| <b>Biological nut</b> | rient rem | noval: mathema | tical mod                   | lelling as a good strategy for co                                         | ontrol syst                 | em design (J.A. Baeza)                                                                         |



|   | W                        | /WTP n                                                                          | nodelling                                                                                                                                                                                                                                                           |                                                                                                          | otivated sludg                        |
|---|--------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|
|   |                          |                                                                                 | ASM2d calibration                                                                                                                                                                                                                                                   | on                                                                                                       |                                       |
|   | <i>S<sub>i j</sub></i> = | $=\frac{\theta_j}{y_i}\frac{dy_i}{d\theta_j}$                                   | Selection of pa<br>Sensitivity analysis/                                                                                                                                                                                                                            |                                                                                                          | fit                                   |
| 0 |                          | 5                                                                               | $+ \left  S_{j,NO_3} \right  + \left  S_{j,XTSS} \right  + \left  S_{j,TKN} \right $                                                                                                                                                                                | $FIM = \sum_{k=1}^{N} Y_{\theta}(k)$                                                                     | $\cdot Q_k^{-1} \cdot Y_{\theta}^T ($ |
|   |                          |                                                                                 | Kinetic / Stoichiometric Group (K                                                                                                                                                                                                                                   | group)                                                                                                   |                                       |
|   | Order                    | Parameter                                                                       | Short<br>Description                                                                                                                                                                                                                                                | Related biomass or<br>process                                                                            | Sensitivit                            |
|   | 1                        | Y <sub>H</sub>                                                                  | Yield coefficient for X <sub>H</sub> .                                                                                                                                                                                                                              | Heterotrophic                                                                                            | 756                                   |
|   | 2                        | $\mu_{A}$                                                                       | Maximum growth rate of X <sub>A</sub>                                                                                                                                                                                                                               | Autotrophic                                                                                              | 678                                   |
|   |                          |                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                          |                                       |
|   | 3                        | b <sub>A</sub>                                                                  | Rate for lysis of X <sub>A</sub>                                                                                                                                                                                                                                    | Autotrophic                                                                                              | 634                                   |
|   | 3<br>4                   | b <sub>A</sub><br>K <sub>NH4,A</sub>                                            | Rate for lysis of $X_A$<br>Saturation coefficient of substrate<br>$NH_4^+$ for nitrification on $S_{NH4}$                                                                                                                                                           | Autotrophic                                                                                              | 634<br>412                            |
|   |                          |                                                                                 | Saturation coefficient of substrate                                                                                                                                                                                                                                 | •                                                                                                        |                                       |
|   | 4                        | K <sub>NH4,A</sub>                                                              | Saturation coefficient of substrate $NH_4^+$ for nitrification on $S_{NH4}$                                                                                                                                                                                         | Autotrophic<br>Chemical phosphate                                                                        | 412                                   |
|   | 4                        | K <sub>NH4,A</sub><br>K <sub>PRE</sub>                                          | Saturation coefficient of substrate $NH_4^*$ for nitrification on $S_{NH4}$<br>Precipitation constant Saturation coefficient of $O_2$                                                                                                                               | Autotrophic<br>Chemical phosphate<br>precipitation<br>Autotrophic<br>Chemical phosphate                  | 412<br>150                            |
|   | 4<br>5<br>6              | K <sub>NH4,A</sub><br>K <sub>PRE</sub><br>K <sub>02,A</sub>                     | $\begin{array}{l} \text{Saturation coefficient of substrate} \\ \text{NH}_4^* \text{ for nitrification on $S_{\text{NH4}}$} \\ \text{Precipitation constant} \\ \text{Saturation coefficient of $O_2$} \\ \text{for nitrification on $S_{\text{NH4}}$} \end{array}$ | Autotrophic<br>Chemical phosphate<br>precipitation<br>Autotrophic                                        | 412<br>150<br>149                     |
|   | 4<br>5<br>6<br>7         | K <sub>NH4,A</sub><br>K <sub>PRE</sub><br>K <sub>O2,A</sub><br>K <sub>RED</sub> | Saturation coefficient of substrate $NH_4^*$ for nitrification on $S_{NH4}$<br>Precipitation constant<br>Saturation coefficient of $O_2$<br>for nitrification on $S_{NH4}$<br>Solubilisation constant                                                               | Autotrophic<br>Chemical phosphate<br>precipitation<br>Autotrophic<br>Chemical phosphate<br>precipitation | 412<br>150<br>149<br>148              |



# WWTP modelling



After a proper process of **model calibration** and **validation**, we can be confident that we have a model able to provide a **good description of** the simulated variables in **that particular WWTP** 

However, we need to calculate different **performance indicators** as a tool for comparison of the behaviour of the WWTP under several **operating conditions** or **control strategies** 























Optimization of setpoints allows to obtain the better performance of a CS

Minimization of a Cost Function where all the criteria considered are converted to monetary units.

#### ANALYSED SCENARIOS

- Open Loop (OL): TSS control loop in R4. Aeration constant in R3 and R4.  $Q_{RINT}/Q_I = 3$ ,  $Q_{REXT}/Q_I = 1$ .
- DO control (DOC): DO control was activated with a setpoint of 4 mg DO  $L^{\text{-1}}$  in R3 and R4.
- Maximum performance for nutrient removal (MPR): Ammonia setpoint was 0 mg L<sup>-1</sup> and nitrate setpoint was optimised to minimise nitrate in the effluent.
- Ammonium and nitrate fixed optimum setpoints (A&N-FOS): Fixed optimum ammonium and nitrate setpoints.
- Ammonium and nitrate daily variable optimum setpoints (A&N-DVOS): Setpoints daily optimised according to the influent flow pattern of the plant.
- Ammonium and nitrate weekly variable optimum setpoints (A&N-WVOS): Two different sets of setpoints are optimised, one for weekend and one for the weekdays.
- Ammonium and nitrate hourly variable optimum setpoints (A&N-HVOS): Setpoints are hourly optimised according to the influent flow pattern of the plant.









Conclusions of the multi-criteria study

- Multi-criteria optimisation provides a set of optimal operation setpoints approximated by a Pareto surface. The optimised setpoint within this surface can be selected by the requirements that are established for each WWTP in terms of the three criteria.
- These requirements can be translated into monetary weights as was done with OCF. OCF optimisation results in an optimised scenario located on Pareto surface.
- The approaches of single OCF or multi-criteria are complementary. The multi-criteria function enabled a more extensive evaluation of different alternatives where none of the criterion is conditional to the other. Once the weights are selected according to the WWTP requirements, the OCF optimisation could be used to adapt the plant operation to the influent variations.





Selection of CS based on classical control tools

#### Relative Gain Array (RGA)

Tool for selecting decentralized control structures



Information 1: Best pairing

#### Information 2: Best set of variables

| 60                         | ntrol |      | ł         | landle Va | riables |                  |
|----------------------------|-------|------|-----------|-----------|---------|------------------|
|                            |       | Ма   | nipulated | Variables | (MV)    | Disturbance (DV) |
| M                          | atrix | MV1  | MV2       | MV3       | MV4     | DV1              |
| ŝ                          | CV1   | 1.00 | 0.00      | 0.00      | 0.00    |                  |
| s (CV)                     | CV2   | 0.00 | 1.00      | 0.00      | 0.00    |                  |
| Controlled<br>Variables (C | CV3   | 0.00 | 0.00      | 1.00      | 0.00    |                  |
| Cc                         | CV4   | 0.00 | 0.00      | 0.00      | 1.00    |                  |











Cascade + Override Phosphorus Control Strategy (COPCS)









Activated sludge: 100 *plus* 1 years (1-1)













Modelling and equipment limitations ... and consequences in control design

- Analysers precision is limited.
  - Several setpoints reported in the literature cannot be achieved in practice. A sensitivity analysis of optimised controllers setpoint should be performed.
- Manipulated variables have a limited range of operation.
  - · Limits must be considered for all the equipment.
    - Anti wind-up controllers should be used.
- Optimization of controller setpoint provides better improvements than the perfect tuning
   of the controller.
- Sensors dynamics should be considered, but the WWTP dynamics is usually much slower.
- Only water line is usually modelled for control. Internal P inputs from reject water and other recycle streams should be also considered.







Application of Non-Square Relative Gain Array (NSRGA) to WWTP with EBPR

| Outputs             | Inputs                                |                                                             |                                                                                            |
|---------------------|---------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                     | QCOD                                  | Q <sub>RINT</sub>                                           | Q <sub>REXT</sub>                                                                          |
| Spo4 R2             | $\frac{4.935}{0.286s+1}e^{-0.312s}$   | $\frac{-2.187 \times 10^{-6}}{0.171s+1} e^{-0.312s}$        | $\frac{-1.289 \times 10^{-3}}{0.417s+1} e^{-0.286s}$                                       |
| S <sub>PO4</sub> R4 | $\frac{-0.266}{1.028s}e^{-0.312s}$    | $\frac{-2.231 \times 10^{-5}}{1.091s+1} e^{-0.202s}$        | $\frac{1.022 \times 10^{-4}}{0.668s+1} e^{-0.312s}$                                        |
| S <sub>PO4</sub> R7 | $\frac{-0.992}{0.748s+1}e^{-0.036s}$  | $\frac{-2.404 \times 10^{-6}}{0.864s+1} e^{-0.312s}$        | $\frac{1.577 \times 10^{-4}}{0.958s+1} e^{-0.307s}$                                        |
| S <sub>NO3</sub> R4 | $\frac{-0.783}{0.486s+1}e^{-0.069s}$  | $\frac{-8.203 \times 10^{-5}}{0.588s+1} e^{-0.307s}$        | $\frac{-5.693 \times 10^{-5}}{0.161s+1} e^{-0.312s}$                                       |
| S <sub>NO3</sub> R7 | $\frac{-1.010}{0.447s+1}e^{-0.295s}$  | $\frac{3.24\times10^{-6}}{0.539s+1}e^{-0.295s}$             | $\frac{-1.357 \times 10^{-4}}{0.206s+1}e^{-0.307s}$                                        |
| S <sub>NH4</sub> R7 | $\frac{-1.010}{0.447s+1}e^{-0.295s}$  | $\frac{1.235 \times 10^{-6}}{8.210s+1} e^{-0.239s}$         | $\frac{-1.072 \times 10^{-6}}{0.840s+1} e^{-0.291s}$                                       |
|                     |                                       |                                                             |                                                                                            |
| M                   |                                       | de REMARIAN                                                 | Computers and Chemical Engineering 53 (2013) 164-177.                                      |
| INTERNAL            | ®                                     |                                                             | Computers and Chemical Engineering                                                         |
| N RECYCLE           |                                       | - Fride Bar                                                 | journal homepage; www.elsevier.com/locate/compchemeng                                      |
|                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | LEARNING                                                    |                                                                                            |
|                     |                                       | DRUENT                                                      |                                                                                            |
|                     |                                       | Development and e<br>strategies for optim                   | conomic assessment of different WWTP contro<br>al simultaneous removal of carbon, nitrogen |
|                     | actor 6 Reactor 7 6000 m3             | Development and e<br>strategies for optim<br>and phosphorus |                                                                                            |







Application of Non-Square Relative Gain Array (NSRGA) to WWTP with EBPR

**Control Structures** 

|                          | controller                                                                                                  | Kc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ti [days]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Td [day                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d Controlled<br>variable |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
| S <sub>PO4</sub> R2      | PID                                                                                                         | 0.4148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1012                                                                                                                                                                                                                                                                                                                                                                |
| S <sub>PO4</sub> R2      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                     |
|                          |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                     |
|                          |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                     |
| So. R6                   | PI                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                     |
| So., R7                  | PI                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                     |
|                          |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
|                          | e finite time norizon, a                                                                                    | and for the comput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tation of the se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | quence of                                                                                                                                                                                                                                                                                                                                                             |
|                          |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
| ure control moves.       |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
|                          | vas used for defining t                                                                                     | these controllers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
|                          | vas used for defining t                                                                                     | these controllers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
|                          | vas used for defining t                                                                                     | these controllers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
|                          | vas used for defining t                                                                                     | these controllers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
|                          | vas used for defining t                                                                                     | these controllers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
|                          | vas used for defining t                                                                                     | these controllers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
|                          | vas used for defining t                                                                                     | these controllers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
|                          | Variable<br>Srot, #2<br>Srot, #2<br>Srot, #7<br>So, #6<br>So, #6<br>So, #7<br>Model F<br>C architecture use | Variable           Srev, R2         PID           Srev, R2         PI           Srev, R3         PI           Srev, R4         PI           Srev, R5         PI           Srev, R5         PI           Srev, R7         PI           Srev, R6         PI           Srev, R7         PI           Srev, R6         PI           Srev, R7         PI           Sreve, R7         PI           Sreve, R7         PI           Sreve, R7         PI           Station         PI           Station         PI           Station         PI           Station | variable           Sros, R2         PID         0.4148           Sros, R2         PI         -1900.3           Sros, R4         PI         34.635           Sros, R5         PI         -4.9246           Sros, R6         PI         100           Sros, R7         PI         -1.92246           Sros, R6         PI         100           Sros, R7         PI         100           Sros, R8         PI         100           Sros, R7         PI         100 | variable           \$vo_R R2         PID         0.4148         0.4432           \$vo_R R2         PI         -1900.3         0.56           \$wo_R R4         PI         34,635         0.74           Xrs. R7         PI         -4.5246         17           \$vo_R S5         PI         100         0.01           \$vo_R S6         PI         100         0.01 |



#### Application of Non-Square Relative Gain Array (NSRGA) to WWTP with EBPR

 Table 7

 Control loops and optimal setpoints of the implemented control strategies.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Controlled parameter                                                 | Controller algorithm                                   | Manipulated variable                                                             | Manipulated<br>variable constrains                                                                                                | Optimal setpoint<br>[mg/L]              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Control loops for CS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_{0_2}$ in R5, R6, R7<br>$S_{NO_3}$ in R4<br>$S_{PO_4}$ in R2      | PI<br>PI<br>PID                                        | $k_L a$ in R5, R6, R7<br>$Q_{MNT}$<br>COD addition                               | $0-160 d^{-1}$<br>$0-92,230 m^3/d$<br>$0-5 m^3 d^{-1}$                                                                            | [1.11, 1.45, 0.27]<br>1.98<br>27.00     |
| Control loops for CS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_{0_2}$ in R5, R6, R7<br>$S_{NO_3}$ in R4<br>$S_{PO_4}$ in R2      | PI<br>PI<br>PI                                         | k <sub>L</sub> a in R5, R6, R7<br>Q <sub>RINT</sub><br>Q <sub>REXT</sub>         | $\begin{array}{c} 0-160d^{-1} \\ 0-92,\!230m^3/d \\ 9223\!-\!27669m^3/d \end{array}$                                              | [1.00, 1.00, 0.25]<br>2.00<br>27.00     |
| Control loops for CS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_{\rm NO_3}$ in R7<br>$S_{\rm NO_3}$ in R4<br>$S_{\rm PO_4}$ in R2 | Supervisory MPC<br>Slave PI<br>PI<br>PID               | $S_{O_2}$ SP in R5, R6, R7<br>$k_L a$ in R5, R6, R7<br>$Q_{BNT}$<br>COD addition | 1–2 mg/L R5 and R6<br>0.25–2 mg/L R7<br>0–160 d <sup>–1</sup><br>0–92,230 m <sup>3</sup> /d<br>0–5 m <sup>3</sup> /d              | 7.00<br>Imposed by MPC<br>2.00<br>27.00 |
| Control loops for CS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_{NH_4}$ in R7<br>$S_{NO_3}$ in R4<br>$S_{PO_4}$ in R2             | Supervisory MPC<br>Slave PI<br>PI<br>PID               | $S_{O_2}$ SP in R5, R6, R7<br>$k_L a$ in R5, R6, R7<br>$Q_{RNT}$<br>COD addition | 1–2 mg/L R5 and R6<br>0.25–2 mg/L R7<br>0–160 d <sup>–1</sup><br>0–92,230 m <sup>3</sup> /d<br>0–5 m <sup>3</sup> d <sup>–1</sup> | 1.50<br>Imposed by MPC<br>1.92<br>27.00 |
| Common control loops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TSS in R7                                                            | PI                                                     | $Q_W$                                                                            | 300-450 m3/d                                                                                                                      | 3850.00                                 |
| NTLUEN<br>Racker I<br>Sou m3<br>Reater<br>Sou m3<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reater<br>Reat | CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO             | Rector 5<br>Air Alar Alar Alar Alar Alar Alar Alar Ala | (14) (55)<br>(16) (17) (17) (17) (17) (17) (17) (17) (17                         | EFFLUENT<br>DISPOSAL<br>(J.A. Bae:                                                                                                | 70)                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                                                        |                                                                                  |                                                                                                                                   |                                         |



Application of Non-Square Relative Gain Array (NSRGA) to WWTP with EBPR

**Control Structures** 

| Inf   | Control<br>strategy | AE<br>[€/d] | PE<br>[€/d] | EC<br>[€/d] | SP<br>[€/d] | SNH<br>[€/d] | P <sub>tot</sub><br>[€/d] | N <sub>tot</sub><br>[€/d] | EF<br>[€/d] | OC<br>[€/d] | OC+dTCC<br>[€/d] |
|-------|---------------------|-------------|-------------|-------------|-------------|--------------|---------------------------|---------------------------|-------------|-------------|------------------|
|       | RO                  | 360         | 39          | 0           | 490         | 169          | 683                       | 638                       | 1489        | 2378        | 2378             |
|       | RO+                 | 382         | 51          | 181         | 502         | 181          | 432                       | 483                       | 1096        | 2212        | 2212             |
| Drv   | CS1                 | 349         | 49          | 171         | 522         | 143          | 298                       | 512                       | 953         | 2044        | 2093             |
| Diy   | CS2                 | 329         | 43          | 0           | 507         | 165          | 464                       | 586                       | 1215        | 2094        | 2143             |
|       | CS3                 | 348         | 48          | 169         | 520         | 141          | 310                       | 520                       | 971         | 2057        | 2115             |
|       | CS4                 | 350         | 47          | 181         | 522         | 77           | 303                       | 512                       | 891         | 1992        | 2050             |
|       | RO                  | 360         | 39          | 0           | 460         | 385          | 1019                      | 868                       | 2272        | 3131        | 3131             |
|       | RO+                 | 382         | 51          | 181         | 484         | 376          | 722                       | 666                       | 1764        | 2861        | 2861             |
| D     | CS1                 | 357         | 52          | 400         | 510         | 378          | 506                       | 645                       | 1529        | 2848        | 2897             |
| Rain  | CS2                 | 318         | 44          | 0           | 458         | 718          | 835                       | 935                       | 2488        | 3309        | 3358             |
|       | CS3                 | 381         | 51          | 409         | 508         | 199          | 523                       | 650                       | 1371        | 2720        | 2778             |
|       | CS4                 | 374         | 50          | 419         | 510         | 162          | 518                       | 644                       | 1324        | 2677        | 2735             |
|       | RO                  | 360         | 39          | 0           | 499         | 448          | 846                       | 887                       | 2180        | 3078        | 3078             |
|       | RO+                 | 382         | 51          | 181         | 509         | 425          | 592                       | 676                       | 1693        | 2816        | 2816             |
| C1    | CS1                 | 361         | 49          | 232         | 527         | 315          | 466                       | 705                       | 1486        | 2655        | 2704             |
| Storm | CS2                 | 336         | 42          | 0           | 524         | 358          | 885                       | 873                       | 2116        | 3018        | 3067             |
|       | CS3                 | 362         | 48          | 232         | 526         | 292          | 474                       | 710                       | 1475        | 2644        | 2702             |
|       | CS4                 | 373         | 46          | 255         | 528         | 131          | 484                       | 704                       | 1318        | 2520        | 2578             |



#### Conclusions of the NSRGA and MPC study

- Four new control approaches for a WWTP with C/N/P removal, with control loops for improving P-removal in addition to the common C/N loops. All the set-points were optimized to ensure optimal performance → the reported results show the highest feasible performance of these control structures with fixed optimized set-points.
- Comparison with all weather influent files with reference operation (open loop except for TSS control) and with optimized reference operation. These results proved that:

(i) Operational costs and effluent quality of the WWTP can be greatly improved using model based optimization of the reference operation. Optimized reference operation improved effluent quality and operational costs by 7%-9%.

(ii) Automatic control of the WWTP can greatly improve the operational costs of the plant, maintain low pollutant effluent concentrations and achieve a more stable performance.

(iii) The Q<sub>COD</sub> - PO4 R2 control loop (controlled external carbon addition in the first anaerobic reactor) provides a stable EBPR process and produces a better effluent quality.

(iv) Using the external recycle flow as manipulated variable to control PO4 at the end of the anaerobic zone proved to be a good approach only under dry weather conditions. The Q<sub>REXT</sub> - PO4 R2 control loop did not assure a stable performance under rain and storm conditions.

(v) CS4 was the most efficient in all working conditions, leading to an operational cost reduction of 120,000 D /year for dry weather conditions. CS3 proved to be the second best due to its good performance during rain and storm events.



Biological nutrient removal: mathematical modelling as a good strate