A mechanical picture of fractional-order Darcy equation
- Autori: Deseri,L; Zingales,M
- Anno di pubblicazione: 2015
- Tipologia: Articolo in rivista (Articolo in rivista)
- OA Link: http://hdl.handle.net/10447/101238
Abstract
In this paper the authors show that fractional-order force-flux relations are obtained considering the flux of a viscous fluid across an elastic porous media. Indeed the one-dimensional fluid mass transport in an unbounded porous media with power-law variation of geometrical and physical properties yields a fractional-order relation among the ingoing flux and the applied pressure to the control section. As a power-law decay of the physical properties from the control section is considered, then the flux is related to a Caputo fractional derivative of the pressure of order 0 ≤ β≤1. If, instead, the physical properties of the media show a power-law increase from the control section, then flux is related to a fractional-order integral of order 0 ≤ β≤1. These two different behaviors may be related to different states of the mass flow across the porous media.