Genome-wide identification of runs of homozygosity islands and associated genes in local dairy cattle breeds
- Autori: Mastrangelo, S.*; Sardina, M.T.; Tolone, M.; Di Gerlando, R.; Sutera, A.M.; Fontanesi, L.; Portolano, B.
- Anno di pubblicazione: 2018
- Tipologia: Articolo in rivista (Articolo in rivista)
- OA Link: http://hdl.handle.net/10447/286200
Abstract
Runs of homozygosity (ROH) are widely used as predictors of whole-genome inbreeding levels in cattle. They identify regions that have an unfavorable effect on a phenotype when homozygous, but also identify the genes associated with traits of economic interest present in these regions. Here, the distribution of ROH islands and enriched genes within these regions in four dairy cattle breeds were investigated. Cinisara (71), Modicana (72), Reggiana (168) and Italian Holstein (96) individuals were genotyped using the 50K v2 Illumina BeadChip. The genomic regions most commonly associated with ROHs were identified by selecting the top 1% of the single nucleotide polymorphisms (SNPs) most commonly observed in the ROH of each breed. In total, 11 genomic regions were identified in Cinisara and Italian Holstein, and eight in Modicana and Reggiana, indicating an increased ROH frequency level. Generally, ROH islands differed between breeds. The most homozygous region (>45% of individuals with ROH) was found in Modicana on chromosome 6 within a quantitative trail locus affecting milk fat and protein concentrations. We identified between 126 and 347 genes within ROH islands, which are involved in multiple signaling and signal transduction pathways in a wide variety of biological processes. The gene ontology enrichment provided information on possible molecular functions, biological processes and cellular components under selection related to milk production, reproduction, immune response and resistance/susceptibility to infection and diseases. Thus, scanning the genome for ROH could be an alternative strategy to detect genomic regions and genes related to important economic traits.