Salta al contenuto principale
Passa alla visualizzazione normale.

GIORGIO DOMENICO MARIA MICALE

Lagrangian simulation of bubbling dynamics in a lab-scale 2D fluidized bed

Abstract

The present work focuses on the development of a novel computational code able to predict with a reasonable level of accuracy the bubble behavior in gas fluidized beds with minimum computational demands. The code simulates the bubble chaotic rise motion and coalescence along bed height via simple lagrangian tracking of bubbles. An original empirical model for the assessment of bubble-bubble interactions is developed. The code is used to simulate a lab-scale unit in bubbling and slugging mode. On this basis, fast simulations are performed to successfully predict bubble population and fluxes within the bed. The main aim of this code is to be embedded within CAPE codes for the process simulation. The model adopted by the code is also well suited for multi-scale modeling approach since physical parameters can be obtained from both experimental data or CFD simulation. Preliminary results of the simulations, in terms of distributions for bubble size and number as well as local hold up values, are compared with relevant experimental data.