Salta al contenuto principale
Passa alla visualizzazione normale.

BRUNA LO SASSO

Monocyte distribution width alterations and cytokine storm are modulated by circulating histones

  • Autori: Ligi, Daniela; Lo Sasso, Bruna; Della Franca, Chiara; Giglio, Rosaria Vincenza; Agnello, Luisa; Ciaccio, Marcello; Mannello, Ferdinando
  • Anno di pubblicazione: 2023
  • Tipologia: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/621326

Abstract

Objectives Extracellular histone levels are associated with the severity of many human pathologies, including sepsis and COVID-19. This study aimed to investigate the role of extracellular histones on monocyte distribution width (MDW), and their effect on the release of cytokines by blood cells.Methods Peripheral venous blood was collected from healthy subjects and treated with different doses of a histone mixture (range 0-200 mu g/mL) to analyze MDW modifications up-to 3 h and digital microscopy of blood smears. Plasma obtained after 3 h of histone treatment were assayed to evaluate a panel of 24 inflammatory cytokines.Results MDW values significantly increased in a time- and dose-dependent manner. These findings are associated with the histone-induced modifications of cell volume, cytoplasmic granularity, vacuolization, and nuclear structure of monocytes, promoting their heterogeneity without affecting their count. After 3 h of treatment almost all cytokines significantly increased in a dose-dependent manner. The most relevant response was shown by the significantly increased G-CSF levels, and by the increase of IL-1 beta, IL-6, MIP-1 beta, and IL-8 at the histone doses of 50, 100, and 200 mu g/mL. VEGF, IP-10, GM-CSF, TNF-alpha, Eotaxin, and IL-2 were also up-regulated, and a lower but significant increase was observed for IL-15, IL-5, IL-17, bFGF, IL-10, IFN-gamma, MCP-1, and IL-9.Conclusions Circulating histones critically induce functional alterations of monocytes mirrored by MDW, monocyte anisocytosis, and hyperinflammation/cytokine storm in sepsis and COVID-19. MDW and circulating histones may be useful tools to predict higher risks of worst outcomes.