Salta al contenuto principale
Passa alla visualizzazione normale.

TIZIANA DI SALVO

Suzaku broad-band spectrum of 4U 1705-44: probing the reflection component in the hard state

  • Autori: Di Salvo, T.; Iaria, R.; Matranga, M.; Burderi, L.; D'Ai, A.; Egron, E.; Papitto, A.; Riggio, A.; Robba, N.; Ueda, Y.
  • Anno di pubblicazione: 2015
  • Tipologia: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/154300

Abstract

Iron emission lines at 6.4-6.97 keV, identified with Kα radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper, we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disc. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these features are consistently fitted with a reflection model, and we find that in the hard state the smearing parameters are remarkably similar to those found in a previous XMM-Newton observation performed in the soft state. In particular, we find that the inner disc radius is Rin = 17 ± 5Rg (where Rg is the gravitational radius, GM/c2), the emissivity dependence from the disc radius is r-2.5 ± 0.5, the inclination angle with respect to the line of sight is i = 43° ± 5°, and the outer radius of the emitting region in the disc is Rout > 200Rg. We note that the accretion disc does not appear to be truncated at large radii, although the source is in a hard state at ˜3 per cent of the Eddington luminosity for a neutron star. We also find evidence of a broad emission line at low energies, at 3.03 ± 0.03 keV, compatible with emission from mildly ionized argon (Ar XVI-XVII). Argon transitions are not included in the self-consistent reflection models that we used and we therefore added an extra component to our model to fit this feature. The low-energy line appears compatible with being smeared by the same inner disc parameters found for the reflection component.