Skip to main content
Passa alla visualizzazione normale.

FRANCESCO DIELI

Janus -faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection

  • Authors: Greco, E; Quintiliani, G; Santucci, MB; Serafino, A; Ciccaglione, AR; Marcantonio, C; Papi, M; Maulucci, G; Delogu, G; Martino, A; Goletti, D; Sarmati, L; Andreoni, M; Altieri, A; Alma, M; Caccamo, N; Di Liberto, D; De Spirito, M; Savage, ND; Nisini, R; Dieli, F; Ottenhoff, TH; Fraziano, M
  • Publication year: 2012
  • Type: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/73214

Abstract

We have generated unique asymmetric liposomes with phosphatidylserine (PS) distributed at the outer membrane surface to resemble apoptotic bodies and phosphatidic acid (PA) at the inner layer as a strategy to enhance innate antimycobacterial activity in phagocytes while limiting the inflammatory response. Results show that these apoptotic body-like liposomes carrying PA (ABL/PA) (i) are more efficiently internalized by human macrophages than by nonprofessional phagocytes, (ii) induce cytosolic Ca(2+) influx, (iii) promote Ca(2+)-dependent maturation of phagolysosomes containing Mycobacterium tuberculosis (MTB), (iv) induce Ca(2+)-dependent reactive oxygen species (ROS) production, (v) inhibit intracellular mycobacterial growth in differentiated THP-1 cells as well as in type-1 and -2 human macrophages, and (vi) down-regulate tumor necrosis factor (TNF)-α, interleukin (IL)-12, IL-1β, IL-18, and IL-23 and up-regulate transforming growth factor (TGF)-β without altering IL-10, IL-27, and IL-6 mRNA expression. Also, ABL/PA promoted intracellular killing of M. tuberculosis in bronchoalveolar lavage cells from patients with active pulmonary tuberculosis. Furthermore, the treatment of MTB-infected mice with ABL/PA, in combination or not with isoniazid (INH), dramatically reduced lung and, to a lesser extent, liver and spleen mycobacterial loads, with a concomitant 10-fold reduction of serum TNF-α, IL-1β, and IFN-γ compared with that in untreated mice. Altogether, these results suggest that apoptotic body-like liposomes may be used as a Janus-faced immunotherapeutic platform to deliver polar secondary lipid messengers, such as PA, into phagocytes to improve and recover phagolysosome biogenesis and pathogen killing while limiting the inflammatory response.