Skip to main content
Passa alla visualizzazione normale.

ANTONIO CHELLA

A Human-Humanoid Interaction through the use of BCI for Locked-In ALS Patients using neuro-biological feedback fusion

  • Authors: Sorbello, R.; Tramonte, S.; Giardina, M.; La Bella, V.; Spataro, R.; Allison, B.; Guger, C.; Chella, A.
  • Publication year: 2018
  • Type: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/264356

Abstract

This paper illustrates a new architecture for a human-humanoid interaction based on EEG-Brain Computer Interface (EEG-BCI) for patients affected by locked-in syndrome caused by Amyotrophic Lateral Sclerosis (ALS). The proposed architecture is able to recognise users’ mental state accordingly to the biofeedback factor Bf , based on users’ Attention, Intention and Focus, that is used to elicit a robot to perform customised behaviours. Experiments have been conducted with a population of 8 subjects: 4 ALS patients in a near Locked-in status with normal ocular movement and 4 healthy control subjects enrolled for age, education and computer expertise. The results showed as three ALS patients have completed the task with 96.67% success; the healthy controls with 100% success; the fourth ALS has been excluded from the results for his low general attention during the task; the analysis of Bf factor highlights as ALS subjects have shown stronger Bf (81.20%) than healthy controls (76.77%). Finally, a post-hoc analysis is provided to show how robotic feedback helps in maintaining focus on expected task. These preliminary data suggest that ALS patients could successfully control a humanoid robot through a BCI architecture, potentially enabling them to conduct some everyday tasks and extend their presence in the environment.