Corso di MATEMATICA E FISICA per C.T.F. - A. A. 2018/19 Modulo di Fisica – 13.09.2019

	NOMENOME	
QUESITI CON VALORE +1		
Il modulo d a) □ 2 b) □ 1	asore di massa 2710 kg scende con accelerazione costante di modulo 1.06 m/s². della tensione nel cavo che sostiene l'ascensore è: 29.4 kN	
volume imr a) • 8	o omogeneo di massa 640 grammi galleggia in un olio di densità 950 kg/m³; il merso è il 78% del volume totale. Il volume totale del corpo è: 644 cm³ 6.25 10 ⁻³ m³ 608 cm³	
90 °C alla t a) □ 9 b) • 3	tto di 300 grammi cede 1380 calorie e si raffredda passando dalla temperatura di temperatura di 40 °C. Il calore specifico dell'oggetto è: 22 cal/(g °C) 85 J/(kg K) -770 J/(kg K)	
	QUESITI CON VALORE +2	
4-Un corpo di massa 370 g viene lanciato lungo un piano orizzontale tramite una molla di costante elastica k = 1480 N/m, la cui compressione iniziale è di 3.7 cm; il coefficiente di attrito dinamico tra il corpo e il piano è 0.40. Il corpo si ferma dopo avere percorso complessivamente: a) □ 47.3 cm b) □ 2.64 m c) □ 1.08 m d) ◆ 69.8 cm		
libero (vel dell'acqua, (trascurare a) \Box 0 b) \Box 1	tto in legno (densità 730 kg/m³) è completamente immerso in acqua. Lasciato ocità iniziale nulla) alla profondità di due metri dalla superficie libera il tempo impiegato dal cubetto per raggiungere la superficie libera è la viscosità dell'acqua): 0.844 secondi 0.65 secondi 0.05 secondi	

6-Una spira quadrata di lato 1.60 cm, percorsa da corrente di intensità 340 mA, si trova in una regione di campo magnetico uniforme di modulo 2.00 tesla; la direzione del campo magnetico è sul piano della spira. Il modulo del momento meccanico che agisce sulla spira è: a) □ 2.56 10 ⁻⁵ Nm b) • 1.74 10 ⁻⁴ Nm c) □ 3.17 10 ⁻⁴ Nm d) □
QUESITI CON VALORE +3
7-Un pendolo semplice è costituito da una pallina di massa M appesa a un filo inestensibile di lunghezza L; il pendolo viene lasciato libero di oscillare da una posizione in cui il filo forma con la direzione verticale un angolo $\alpha=60^\circ$; quando il pendolo passa per la posizione di equilibrio stabile, la tensione T della fune è (attrito trascurabile; g accelerazione di gravità): a) \Box $T=zero$ b) \bullet $T=2$ Mg c) \Box $T=3$ Mg d) \Box
8-Un liquido ideale (densità 1.18 10³ kg/m³) scorre in regime stazionario in un condotto a sezione e altezza variabili; nel punto più basso la sezione del condotto è il doppio di quella che si trova 6.40 metri più in alto, dove il liquido scorre con velocità 1.44 m/s. La differenza di pressione tra le due sezioni è: a) □ 49.4 kPa b) ◆ 74.9 kPa c) □ 30.8 kPa d) □
9-Un blocco di 120 g di ghiaccio alla temperatura di −15 °C viene messo all'interno di un recipiente con pareti adiabatiche e di capacità termica trascurabile, contenente dieci litri di acqua alla temperatura di 22 °C. Raggiunto l'equilibrio termico, la variazione di entropia dei dieci litri di acqua è stata: a) □ −52.3 J/K b) □ 288 J/K c) • −185 J/K d) □
10-Cinque moli di gas ideale biatomico si trovano in un recipiente con un pistone mobile, in uno stato di equilibrio termodinamico alla pressione di 240 kPa e occupano un volume di 65.3 litri. Il gas viene riscaldato reversibilmente a volume costante fino a raggiungere un nuovo stato di equilibrio; la sua variazione di entropia nel processo è 15.7 J/K. La variazione di energia interna del gas nel processo è stata: a) □ 1.28 kJ b) □ -17.2 kJ c) □ 4.16 kJ

11-Un gas ideale monoatomico compie un ciclo reversibile costituito dalle seguenti		
trasformazioni:		
$A \rightarrow B$ espansione isobara; $V_B = 4 V_A$;		
$B \rightarrow C$ espansione isoterma; $V_C = 8 V_A$;		
$C \rightarrow D$ compressione isobara; $V_D = V_A$;		
$D \rightarrow A$ riscaldamento a volume costante;		
Il rendimento del ciclo è:		
a) \(\square \) 13.3\%		
b) \(\sum \) 25.7\%		
c) \(\sigma \) 31.5\%		
d) ♦ 20.6%		
12-Due fili conduttori rettilinei molto lunghi sono disposti parallelamente nel vuoto a distanza di 80 cm l'uno dall'altro. Nei fili scorre corrente con lo stesso verso e intensità pari a 150 μA in uno e 320 μA nell'altro. Il campo magnetico risultante è nullo: a) □ tra i due fili alla distanza di 61.3 cm da quello con corrente 320 μA b) ◆ tra i due fili alla distanza di 25.5 cm da quello con corrente 150 μA c) □ esternamente ai due fili alla distanza di 30 cm da quello con corrente 150 μA d) □		
13-In una data regione di spazio è presente un campo elettrico uniforme, di modulo 3.80 kV/m diretto nel verso positivo dell'asse X, e un campo magnetico uniforme di modulo 1.20 T diretto nel verso positivo dell'asse Z. Una particella carica attraversa questa regione di spazio con moto rettilineo uniforme. La particella si muove: a) □ con velocità in modulo 5.04 km/s nel verso positivo dell'asse Y b) □ con velocità in modulo 6.91 km/s nel verso negativo dell'asse Y c) ◆ con velocità in modulo 3.17 km/s nel verso negativo dell'asse Y d) □		

costante universale dei gas $R=8.31~\mathrm{J/(mol~K)}$ densità acqua: $1.00~10^3~\mathrm{kg/m^3}$ calore specifico acqua liquida: $1.00~\mathrm{cal/(g~^\circ C)}$ calore specifico ghiaccio: $0.500~\mathrm{cal/(g~^\circ C)}$ calore latente di fusione del ghiaccio: $80.0~\mathrm{cal/g}$ 1 caloria = $4.186~\mathrm{joule}$