From high school to second level degree: a multi-state model to analyse the southern University mobility in Italy

La mobilitá universitaria dal Sud al Nord in Italia

Marco Enea¹ Massimo Attanasio¹

¹Dipartimento di Scienze Economiche, Aziendali e Statistiche University of Palermo, Italy

Palermo, 11th December 2017

M. Enea, M. Attanasio

students' mobility from HS to MA enrolmen

Outline

- Introduction
- The data
- Methodological approach
- Application to two Italian students' cohorts
- Results
- Conclusions

2

Research Group

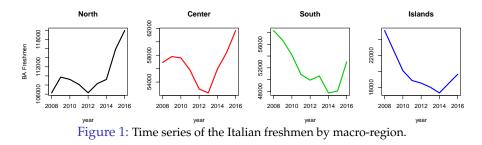
• MIUR

• University of Palermo

• University of Cagliari

• University of Siena

University of Turin


A D F A B F A B F A

Outline

University enrolments in Italy in the last years

Since year 2008 till 2012, there has been an overall decrease in the university enrolments, with an average loss of about 4300 Bachelor (BA) freshmen per year.

After, the enrolments increased: in 2012 at the North, in 2013 at the Center, and in 2014 at the South and Islands.

At the same time there has been an increase in the students' mobility (SM) from South and Islands toward the Center-North

・ コ ト ・ 四 ト ・ 回 ト ・

Outline

Data & Aims

The transition from high school to the second level university degree courses in terms of macro-regional mobility.

The Data

- were provided by the Italian Ministry of Education, University and Research.
- are a national level longitudinal administrative micro-data on educational careers
- two Italian freshmen cohorts enrolled at an Italian 3-year degree course in 2008/09 and 2011/12
- 242076 and 227870 3-year freshmen, respectively, with around 200 variables
- the follow up is 7 and 5 years, respectively

Aim

- to describe the spatio-temporal mobility paths in terms of students' flows
- to provide "mover" or "stayer" students' profiles at BA and MA levels
- to compare the baseline profiles for the two cohorts

The student's challenge: the 2008 cohort

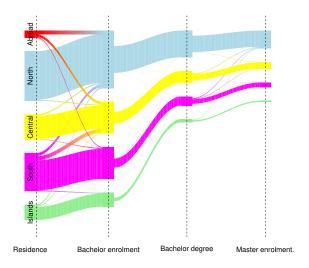


Figure 2: Sankey diagram of Italian university students' careers in terms of macro-regional mobility for the cohort 2008/09.

M. Enea, M. Attanasio

The student's challenge: the 2011 cohort

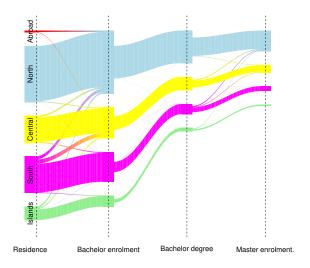


Figure 3: Sankey diagram of Italian university students' careers in terms of macro-regional mobility for the cohort 2011/12.

M. Enea, M. Attanasio

Table 1: The 2008 and 2011 students' cohorts' "multiple challenges" to enroll at the master degree course passing through the bachelor enrolment and degree. Percentages are calculated with respect the number of residents.

Cohort	Path	Residents	BA enrolments	BA degrees	MA enrolments
2008	Always NORTH	88711	86821	43174	25070
	%		97,9	48,7	28,3
	Other paths %		1890	64	303
	Always CENTER	45126	41411	15580	8122
	%		91,8	34,5	18,0
	Other paths %		3715 8,2	84 0,2	821 1,8
	70		8,2	0,2	1,0
	Always SOUTH	67902	53888	15469	7822
	%		79,4	22,8	11,5
	Other paths		14014	388	1592
	%		20,6	0,6	2,3
	Always ISLANDS	27598	23503	5476	2114
	%		85,2	19,8	7,3
	Other paths		4095	140	911
	%		14,8	0,5	3,3
2011	Always NORTH	94618	92989 98,3	49750 52,6	26834 28,4
	70 Other paths		98,5 1629	52,6	28,4
	%		1,7	0,1	
	Always CENTER	45513	41536	17629	8980
	%	45515	91,3	38,7	19,2
	Other paths		3977	150	1213
	%		8,7	0,3	2,2
	Always SOUTH	61789	48245	16616	7886
	%		78,1	26,9	12,8
	Other paths		13544 21,9	314 0,5	2272 3,7
	/0		21,9	0,5	3,1
	Always ISLANDS	22820	17850	5626	2128
	%		78,0	24,7	9,3
	Other paths		5015 22,0	159 0,7	1122
	/0		22,0		

M. Enea, M. Attanasio

students' mobility from HS to MA enrolmen

BA enrolment by residence

Table 2: Percentage rates of bachelor enrolments by residence macro-region and University macro-region, for the cohorts 2008 and 2011 (% row)

	Residence		Bachelor e	nrolment at		
Cohort	at	North %	Center %	South %	Islands %	Total %
2008	Abroad North Center South Islands Total	50,09 97,87 5,15 8,06 8,67 42,71	37,07 1,78 91,77 10,75 5,26 23,32	11,11 0,27 2,98 79,36 0,91 23,60	1,73 0,08 0,10 1,83 85,16 10,36	100 100 100 100 100 100 100
2011	Abroad North Center South Islands Total	76,58 98,28 5,70 8,87 12,83 46,69	18,98 1,47 91,26 11,26 7,81 22,93	2,91 0,23 3,00 78,41 1,14 22,11	1,53 0,02 0,04 1,45 78,22 8,27	100 100 100 100 100 100 100

BA graduation within 5 years

Table 3: Percentage rates of BA graduation by macro-region of residence (by row) and of graduation for the cohorts 2008/09 and 2011/12

Cohort		North	Centre	South	Islands	Total
2008/09	Abroad	32.1	29.1	21.5	15.4	29.5
	North Centre	<mark>49.8</mark> 51.3	43.2 37.8	24.2 24.4	21.1 19.6	49.6 38.1
	South Islands	48.7 46.6	42.6 42.6	29.0 25.0	27.1 23.5	32.0 26.5
	Total	48.6	38.0	28.7	23.6	38.8
2011/12	Abroad North	32.0 53.6	24.6 46.8	18.7 31.0	33.3 43.5	30.2 53.4
	Centre	66.2	42.7	32.9	44.4	43.7
	South Islands	56.2 54.5	49.4 46.1	34.9 53.5	30.8 32.1	38.3 36.3
	Total	53.5	43.6	34.9	32.1	45.4

- Movers' BA rates are higher than the Northern stayers
- Moving from South and Islands is very convenient

M. Enea, M. Attanasio

MA enrolment within 6 years

 Table 4: Percentage rates of master degree enrolments, by BA macro-region and MA enrolment macro-region, for the cohorts 2008/09 and 2011/12

	Bachelor		Master er	rolment at	Total	Not	Total	
Cohort 2008	at North Centre South Islands Total	North % 57,9 5,3 6,1 12,3 33,9	Centre % 1,0 51,6 4,1 4,2 13,3	South % 0,1 0,7 50,0 0,3 9,0	Islands % 0,0 0,1 0,1 38,5 2,5	enrolled % 59,0 57,7 60,3 55,3 58,7	enrolled % 41,0 42,3 39,7 44,7 41,3	BAs % 100 100 100 100 100
2011	North Centre South Islands Total	54,3 7,1 8,5 15,2 33,8	1,2 49,4 5,1 4,6 12,7	0,1 0,5 46,5 0,5 8,1	0,0 0,1 0,0 37,5 2,2	55,6 57,2 60,1 57,8 56,8	44,4 42,8 39,9 42,2 43,2	100 100 100 100 100

The highest continuation rate to the MASTER is in the South

< ロト < 同ト < ヨト < ヨト

MA enrolment within 6 years by region

Table 5: Origin-destination regions for MA enrolments. Cohort 2011/12.

	Abr	Bas	Cal	Cam	Emi	Fri	Laz	Lig	Lom	Mar	Pie	Pug	Sar	Sic	Tos	Tre	Umb	Ven	Total	permanence rate	migration rate
Abruzzo	1280			27	122	2	131	4	63	53	46	17			43	5	9	51	1853	0,691	0,309
basilicata	5	88		16	16		7		11	2	14	5			4		1	2	171	0,515	0,485
Calabria	5		727	6	49	2	42	1	55	1	44	3		3	45	2	5	5	995	0,731	0,269
Campania	17		3	4376	141	11	321	6	195	18	117	5	1	11	70	19	1	50	5362	0,816	0,184
Emilia	7			12	4881	26	99	15	352	47	176	10	2	4	116	46	7	244	6044	0,808	0,192
Friuli				1	57	901	15	1	65	4	37	1			18	16	1	148	1265	0,712	0,288
Lazio	16		1	44	158	5	5991	6	197	15	104	7	2	5	59	16	14	52	6692	0,895	0,105
Liguria				1	36	7	14	944	109	2	79			3	30	7		15	1247	0,757	0,243
Lombardia	4		1	7	212	25	134	35	12144	10	180	10	3	1	64	48	2	190	13070	0,929	0,071
Marche	152	1		2	176	9	43	4	59	1111	61	10	1	2	51	17	5	57	1761	0.631	0,369
Piemonte	2				54	10	16	22	144	1	4153	1	2		11	6	2	24	4448	0.934	0,066
Puglia	33	3	1	13	169	18	92	2	143	37	133	1811			55	9	4	51	2574	0.704	0,296
Sardegna	1			1	63	1	22	8	41	6	52	1	536	1	31			25	789	0.679	0,321
Sicilia	4		14	10	226	21	102	3	222	13	215		2	1743	86	14	12	49	2736	0.637	0,363
Toscana	1			6	178	8	67	5	139	7	79	1	2	1	2752	10	12	54	3322	0,828	0,172
Trentino					64	9	7		73	1	17				14	619		113	917	0,675	0,325
Umbria	21			4	94	9	46		50	12	29	1		3	51	8	644	20	992	0,649	0,351
Veneto			1	4	221	59	46	1	185	6	80	1	1	1	40	51	1	4392	5090	0,863	0,137
Total	1548	92	748	4530	6917	1123	7195	1059	14247	1348	5616	1884	552	1778	3540	893	726	5542	59338		
attractiveness: rate	0,173	0,043	0,028	0,034	0,294	0,198	0,167	0,109	0,148	0,176	0,261	0,039	0,029	0,020	0,223	0,307	0,113	0,208			

Trentino has the highest attractiveness rate (30,7%), Sicily has the lowest one (2%),

• Basilicata has the highest migration rate (48,5%), Piemonte has the lowest one (6,6%)

イロト イロト イヨト イヨト 三日

The model

Assumption: The entire process from High School (HS) to the MA enrolment since is in discrete time (*t* is the Academic Year)

After four years since enrolment the student can be either BA graduated or not, and if graduated, he/she can enroll at the MA.

We apply a discrete-time multi-state model.

Actually, we split it into two separate models, one for the BA graduation and the other one for the MA enrolment.

Further model assumptions/simplifications

- a multi-state model is estimated for each cohort
- students complete their BA in the university of first enrolment
- less observed macro-regional mobility paths are collapsed
- South and Islands (SI) are also collapsed for the MA enrolment
- No model selection is done, and covariates are chosen from the literature

The model

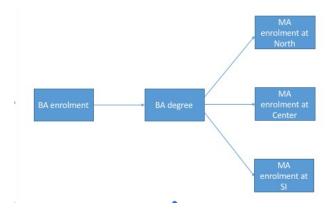


Figure 4: The multi-state model.

M. Enea, M. Attanasio

students' mobility from HS to MA enrolmen

æ

Model for the BA graduation

The model for the BA graduation is a discrete-time logistic regression model.

By indicating with p(t|z) the probability of BA graduation at time t, conditioned to a covariate vector z, the model is

$$\log\left(\frac{p(t|Z)}{1-p(t|Z)}\right) = \alpha(t=3) + \gamma(t>3) + \beta'Z,\tag{1}$$

where

- Z is the covariate design matrix
- $\alpha(t = 3)$ and $\gamma(t > 3)$ are time-dependent intercepts with cutpoint equal to 3
- $\beta' Z$ is the linear predictor

Model for the MA enrolment

The model for the MA graduation is a discrete-time partially proportional odds multinomial model.

$$\log\left(\frac{p^{(j)}(t|X;Z)}{p^{(0)}(t|X;Z)}\right) = \alpha^{(j)}(t=4) + \gamma^{(j)}(t>4) + \delta^{(j)'}X^{(j)} + \beta'Z,$$
(2)

where

- j = 1, 2, 3, corresponding to North, Center and SI, respectively
- X and Z are covariate design matrices
- $p^{(0)}(t|X;Z)$ is the probability for the reference category, that is the probability of discontinuing university after BA at time *t*
- $p^{(j)}(t|X;Z)$ is the probability of MA enrolment in the *j*-th macro-region at time *t*
- α⁽ⁱ⁾(t = 4) and γ⁽ⁱ⁾(t > 4) are the time-dependent non proportional-odds (NPO) intercepts with cutpoint equal to 4
- $\delta^{(j)'} X^{(j)}$ is the NPO linear predictor for the *j*-th multinomial equation
- $\beta' Z$ is the proportional-odds linear predictor.

・ロン ・四 と ・ 回 と ・ 日 と

Variable	type	Description
BA_eTime	discrete	Time (in years) since BA enrolment
I(BA_eTime >3)	binary	1= Time since BA enrolment >3 years
Path1L	categorical	Macro-Regional (MR) Path to BA enrolment: <mr ba="" before="" enrolment=""> - <mr ba="" enrolment="" of=""></mr></mr>
Area1L	categorical	Area of Study at BA: Heath, Scientific, Social, Humanistic
Birth_Year	discrete	Student's year of birth
I(Birth_Year >= 1989)	binary	1= Student's year of birth >= 1989 (used for the 2008 cohort)
I(Birth_Year >= 1992)	binary	1= Student's year of birth >= 1992 (used for the 2011 cohort)
Gender_M	binary	1= male gender
HS	categorical	High School type: Classical, Scientific, Technical, Vocational, Other
HS_Grade	discrete	High School final grade ranging in 60-100
I(HS_Grade - 80)	discrete	High School final grade centered at grade 80

Table 6: Description of the covariates used in the model for the BA graduation.

Э

・ロット 小田 マネ 山マ

Variable	type	Description
BA_Time	discrete	Time (in years) to get a Bachelor degree
I(BA_Time >3)	binary	1= Time to get a Bachelor degree >3 years
MA_eTime	discrete	Time (in years) to MA enrollment after BA
I(MA_eTime >4)	binary	1= Time to MA enrollment after BA >4 years
Path2L	categorical	Macro-Regional (MR) Path to BA degree: <mr ba="" before="" enrolment=""> - <mr ba="" degree="" of=""></mr></mr>
Area1L	categorical	Area of Study at BA: Heath, Scientific, Social, Humanistic
Birth_Year	discrete	Student's year of birth
I(Birth_Year >= 1989)	binary	1= Student's year of birth >= 1989 (used for the 2008 cohort)
I(Birth_Year >= 1992)	binary	1= Student's year of birth >= 1992 (used for the 2011 cohort)
Gender_M	binary	1= male gender
HS	categorical	High School type: Classical, Scientific, Technical, Vocational, Other
HS_Grade	discrete	High School final grade ranging in 60-100
I(HS_Grade - 80)	discrete	High School final grade centered at grade 80

Table 7: Description of the covariates used in the model for the MA enrolment

Э

ヘロア ヘロア ヘビア ヘビア

Model results

Model for the BA graduation

 Table 8: Estimates comparison from two logistic models for the BA graduation, from the 2008 and 2011 cohorts.

	2008 Cohort	2011 Cohort	
	Estimate	Estimate	Difference
(Intercept)	-0.667 ***	-0.741 ***	-0.074
I(BA_eTime > 3)TRUE	-0.019 **	0.003	0.022
Path1L_Center-Center	-0.331 ***	-0.589 ***	-0.258
Path1L_Center-Islands	-0.369	-0.749	-0.380
Path1L.Center-North	-0.039	0.138 ***	0.177
Path1L_Center-South	-0.693 ***	-0.699 ***	-0.006
Path1L_Islands-Center	-0.474 ***	-0.773 ***	-0.299
Path1L_Islands-Islands	-0.869 ***	-1.162 ***	-0.293
Path1L_Islands-North	-0.379 ***	-0.435 ***	-0.056
Path1L_Islands-South	-0.955 ***	-0.196	0.759
Path1L_North-Center	-0.081 .	-0.415 ***	-0.334
Path1L_North-Islands	-0.425 .	-0.559	-0.134
Path1L_North-South	-0.407 **	-0.486 ***	-0.079
Path1L_South-Center	-0.431 ***	-0.616 ***	-0.185
Path1L_South-Islands	-1.015 ***	-1.492 ***	-0.477
Path1L_South-North	-0.359 ***	-0.386 ***	-0.027
Path1L_South-South	-0.755 ***	-1.021 ***	-0.266
Area1L_Health	0.144 ***	0.820 ***	0.676
Area1L_Scientific	-0.296 ***	-0.714 ***	-0.418
Area1L_Humanistic	-0.062 ***	-0.145 ***	-0.083
I(Birth_Year >= 1989)TRUE	0.252 ***	0.549 ***	0.297
Gender_M	-0.174 ***	-0.12 0 ***	0.054
HS_Classical	0.123 ***	0.343 ***	0.220
HS_Scientific	0.203 ***	0.416 ***	0.213
HS_Vocational	-0.290 ***	-0.669 ***	-0.379
HS_Technical	-0.129 ***	-0.306 ***	-0.177
I(HS_Grade - 80)	0.030 ***	0.048 ***	0.018

Baseline: BA_eTime = 3, Path1L_North-North, Area1L_Social, Birth_Year < 1989, Gender_F, HS_Other, HS_Grade=80 + 4 🚊 + 4 🗉

Model for the MA enrolment

	No	orth		Cer	nter		South+	Islands	
	2008	2011		2008	2011		2008	2011	
	Estimate	Estimate	Difference	Estimate	Estimate	Difference	Estimate	Estimate	Difference
(Intercept)	-1.287 ***	-0.266 ***	1.021	-5.491 ***	-4.398 ***	1.093	-8.577 ***	-7.884 ***	0.693
I(MA_eTime > 4)TRUE	-0.982 ***	-0.647 ***	0.335	-0.788 ***	-0.5 ***	0.288	-0.634 ***	-0.463 ***	0.171
Path2L_North-Center	-1.288 ***	-1.394 ***	-0.106	3.499 ***	3.51 ***	0.011	1.175	3.039 ***	1.864
Path2L_Center-Center	-2.202 ***	-1.763 ***	0.439	4.054 ***	4.297 ***	0.243	2.178 ***	2.778 ***	0.6
Path2L_Center-North	-0.229 ***	-0.203 ***	0.026	2.081 ***	1.854 ***	-0.227	-10.626	1.85 ***	12.476
Path2L_Center-South	-2.097 ***	-1.529 ***	0.568	2.207 ***	2.827 ***	0.62	7.092 ***	7.555 ***	0.463
Path2L_South-Center	-2.237 ***	-1.47 ***	0.767	3.879 ***	4.223 ***	0.344	4.768 ***	4.665 ***	-0.103
Path2L_South-North	0.159 ***	0.183 ***	0.024	1.541 ***	1.425 ***	-0.116	4.388 ***	3.956 ***	-0.432
Path2L_South-South	-2.07 ***	-1.505 ***	0.565	1.81 ***	2.063 ***	0.253	7.113 ***	7.723 ***	0.61
Path2L_Islands-Center	-1.793 ***	-1.51 ***	0.283	3.73 ***	3.969 ***	0.239	4.209 ***	4.275 ***	0.066
Path2L_Islands-Islands	-1.496 ***	-1.086 ***	0.41	1.639 ***	1.796 ***	0.157	6.855 ***	7.348 ***	0.493
Path2L_Islands-North	-0.037	0.108 *	0.145	1.054 ***	0.968 ***	-0.086	4.326 ***	3.967 ***	-0.359
Path2L_Other-Paths	-1.307 ***	-1.305 ***	0.002	2.001 ***	1.584 ***	-0.417	7.112 ***	7.114 ***	0.002
Area1L_Health	-1.776 ***	-3.232 ***	-1.456	-1.776 ***	-3.232 ***	-1.456	-1.776 ***	-3.232 ***	-1.456
Area1L_Scientific	0.012	0.377 ***	0.365	0.012	0.377 ***	0.365	0.012	0.377 ***	0.365
Area1L_Humanistic	0.118 ***	-0.297 ***	-0.415	0.118 ***	-0.297 ***	-0.415	0.118 ***	-0.297 ***	-0.415
I(Birth_Year >= 1989 ^a)TRUE	0.46 ***	0.542 ***	0.082	0.46 ***	0.542 ***	0.082	0.46 ***	0.542 ***	0.082
Gender_M	0.006	0.19 ***	0.184	0.006	0.19 ***	0.184	0.006	0.19 ***	0.184
HS_Classic	0.29 ***	0.649 ***	0.359	0.29 ***	0.649 ***	0.359	0.29 ***	0.649 ***	0.359
HS_Scientific	0.278 ***	0.548 ***	0.270	0.278 ***	0.548 ***	0.270	0.278 ***	0.548 ***	0.270
HS_Vocational	-0.363 ***	-0.385 ***	-0.022	-0.363 ***	-0.385 ***	-0.022	-0.363 ***	-0.385 ***	-0.022
HS_Technical	-0.144 ***	-0.062 ***	0.082	-0.144 ***	-0.062 ***	0.082	-0.144 ***	-0.062 ***	0.082
I(HS_Grade - 80)	0.011 ***	0.023 ***	0.012	0.011 ***	0.023 ***	0.012	0.011 ***	0.023 ***	0.012
I(BA_Time > 3)TRUE	-0.661 ***	-0.779 ***	-0.118	-0.661 ***	-0.779 ***	-0.118	-0.661 ***	-0.779 ***	-0.118

" >= 1992 for the 2011 cohort

Baseline: MA_eTime = 4, BA_eTime = 3, Path1L_North-North, Area1L_Social, Birth_Year < 1989, Gender F, HS_Other, HS_Grade=80.

크

Model results

Estimated Probabilities from the BA graduation Model

 Table 9: BA graduation probabilities at the third year, conditioned to the

 macro-regional path, from the estimated multinomial model. Cohorts 2008 and 2011

	P(BA t = 3) Cohort 2008	P(BA t = 3) Cohort 2011
North-Center	0.32	0.24
North-Islands	0.25	0.21
North-North	0.34	0.32
North-South	0.26	0.23
Center-Center	0.27	0.21
Center-Islands	0.26	0.18
Center-North	0.33	0.35
Center-South	0.20	0.19
South-Center	0.25	0.20
South-Islands	0.16	0.10
South-North	0.26	0.24
South-South	0.19	0.15
Islands-Center	0.24	0.18
Islands-Islands	0.18	0.13
Islands-North	0.26	0.24
Islands-South	0.16	0.28

Baseline: BA_eTime = 3, Path1L_North-North, Area1L_Social, Birth_Year < 1989, Gender_F, HS_Other, HS_Grade=80.

Estimated Probabilities from the MA enrolment Model

Table 10: MA enrolment probabilities, conditioned to the macro-regional path, from the estimated multinomial model. Cohorts 2008 and 2011

Cohort	always stayers	p (MA enr.)	BA mover/MA stayer	p (MA enr.)	BA stayer/MA mover	p (MA enr.)
2008	North-North-North	0.216	South-North-North	0.238	South-South-North	0.027
	Center-Center-Center	0.187	Islands-North-North	0.206	Islands-Islands-North	0.049
	South-South-SI	0.179	South-Center-Center	0.159	South-South-Center	0.020
	Islands-Islands-SI	0.142	Islands-Center-Center	0.140	Islands-Islands-Center	0.017
2011	North-North-North	0.431	South-North-North	0.462	South-South-North	0.080
	Center-Center-Center	0.443	Islands-North-North	0.448	Islands-Islands-North	0.135
	South-South-SI	0.402	South-Center-Center	0.408	South-South-Center	0.046
	Islands-Islands-SI	0.305	Islands-Center-Center	0.352	Islands-Islands-Center	0.039

Baseline: MA_eTime = 4, BA_eTime = 3, Path1L_North-North, Area1L_Social, Birth_Year < 1989, Gender_F, HS_Other, HS_Grade=80.

Conclusions

Conclusions

Multiple challenge from HS diploma to the MA degree enrolment

- The novelty of the paper is the analysis of the whole Italian university students flows
- we further provide probabilities of BA degree and MA enrolment for all the students' profile focusing on mobility

The analysis showed

- a North-South (till Islands) decreasing gradient in terms both of rates of BA degree and rates of MA enrolment,
- an increase of the MA student mobility from South and Islands toward North, with poorly observed opposite flows.
- the MA enrolment probability for the last cohort available (2011) is higher than the 2008 one

Future work and Data potentiality

The available data allow several types of longitudinal analysis, for example:

- students' mobility at a deeper level
- students' mobility and performance at the first and the second level university degree
- students' mobility and performance for the 5/6-year degree courses

Thanks for your attention!

A D F A B F A B F

References

References

Bruno, G., Genovese, A.: A spatial interaction model for the representation of the mobility of University students on the Italian territory. Netw. Spat. Econ. (2010) doi: 10.1007/s11067-010-9142-7

Dal Bianco, A., Spairani A., and Ricciari V.: La mobilitá degli studenti in Italia: un'analisi empirica. Rivista di Economia e Statistica del Territorio, 1(1), pp. 123-143 (2010)

Dotti, N.F., Fratesi, U., Lenzi C., Percoco M.: Local labour markets and the interregional mobility of Italian university students, working paper (2010)

Lupi, C., Ordine P.: Family income and students' mobility. In: Giornale degli economisti, 68(1), pp. 1-23 (2009)

Pitti, M., Pipitone, V., Fulantelli, G., Allegra, M.: La scelta universitaria inItalia: differenze fra Nord e Sud. Rivista economica del Mezzogiorno, a. XXV(4), pp. 943-966 (2011)

Steele F.: Event history analysis. NCRM Methods Review Papers, NCRM\004, (2005) URL http://eprints.ncrm.ac.uk/88/1/MethodsReviewPaperNCRM-004.pdf

Enea, M., Attanasio, A.: An Association Model for Bivariate Data with Application to the Analysis of University Students' Success. J. Appl. Stat., 43(1), 46-57, (2106) DOI: 10.1080/02664763.2014.998407