Facoltà di Economia - STATISTICA - Corso di Recupero a.a. 2012-13 Prof.ssa G. Balsamo

Quando lo studio di un fenomeno richiede <u>l'analisi contemporanea di due</u> o più <u>caratteri</u>, è importante esaminare la <u>relazione che li lega</u>.

Variabili Qualitative

Nel caso di una *Mutabile Doppia*, si prendono in esame due caratteri:

U con modalità $\mathbf{u_1}$, $\mathbf{u_2}$ $\mathbf{u_i}$ $\mathbf{u_r}$

V con modalità v_1 , v_2 v_k v_c rilevati congiuntamente su N soggetti

♣ Se le coppie di modalità $[u_i \ v_k]$ si presentano con frequenza <u>non-sempre unitaria</u>, allora la sintesi tabellare è una *distribuzione doppia di frequenze* che, nel caso di variabili qualitative, è detta *Tabella di Contingenza* e si presenta nella forma seguente.

In essa si indica con il simbolo n_{ik} la *frequenza congiunta*, ossia il <u>numero di casi</u> in cui si è presentata congiuntamente la i-esima modalità, u_i della mutabile U e la k-esima modalità, v_k della mutabile V.

U	V					
	v_I	••••	v_k	•••	v_c	Totali
u_1	n ₁₁	••••	n_{1k}	••••	n _{1c}	n _{v1}
u_2	n ₂₁	••••	n_{2k}	••••	n _{2c}	n _{v2}
:	:	:	:	:	:	
$\mathbf{u_i}$	n _{i1}	••••	n_{ik}	••••	n _{ic}	n _{vi}
:	:	:		:		
u_r	n _{r1}	••••	n _{rk}		n _{rc}	n _{vr}
Totali	$n_{\rm u1}$	//	n_{u2}	//	n _{uc}	N

Prof.ssa G. Balsamo – Dipartimento di Scienze Statistiche e Matematiche "S. Vianelli" – Ateneo di Palermo

Lo studio delle <u>relazioni</u> che possono esistere <u>tra le modalità di due Mutabili</u> si basa unicamente sull'analisi del <u>comportamento delle</u> **frequenze**.

♣ La prima verifica da effettuare è la <u>verifica di indipendenza</u> tra le due <u>mutabili</u>. In generale *due mutabili sono indipendenti* se :

$$\mathbf{n_{ik}} = \frac{\mathbf{n_{vi}} \times \mathbf{n_{uk}}}{\mathbf{N}}$$

Questa formula esprime la condizione della *Perfetta Indipendenza Stocastica* o matematica. Si indica con il nome di *frequenza teorica* e con il simbolo v_{ik} il prodotto del totale riga per il totale colonna", diviso il totale generale.

♣ Analisi delle Contingenze

Nel caso in cui la tavola a doppia entrata, è una tavola formata da \mathbf{r} righe e \mathbf{c} colonne, la verifica di indipendenza deve essere fatta su tutte le frequenze della tavola: utilizzando la formula [a] si calcolano le *frequenze teoriche* \mathbf{v}_{ik} e si confrontano con le "frequenze empiriche" della tabella, calcolando le *contingenze*:

$$C_{ik} = n_{ik} - v_{ik}$$

Nel caso di associazione nulla tra i due caratteri, le <u>contingenze sono tutte nulle</u>: perfetta indipendenza. Se le <u>contingenze sono diverse da zero</u> $C_{jk} \neq 0$, vi è un legame reciproco tra le due mutabili che può essere misurato tramite alcuni indici.

Tabelle (r x c)						
Indici	formula	caratteristiche				
Indice di Associazione di Pearson	$\mathbf{X}^{2} = \sum_{i=1}^{r} \sum_{k=1}^{c} \left[\frac{\left(\mathbf{n}_{ik} - \mathbf{v}_{ik}\right)^{2}}{\mathbf{v}_{ik}} \right]$	$X^2 \ge 0$ $X^2 = 0$ assenza di associazione $X^2 > 0$ associazione				
		Il massimo valore che può assumere l'indice X^2 è pari a: N per [numero minimo tra (r - 1) e (c - 1)].				
Coefficiente di Contingenza Quadratica	$\mathbf{C} = \sqrt{\frac{\mathbf{X}^2}{\mathbf{N} + \mathbf{X}^2}}$	0 ≤ C < 1 se C = 0 i due caratteri sono <u>indipendenti</u> ; e più C si avvicina 1 più l'associazione tra i due caratteri aumenta.				

Prof.ssa G. Balsamo – Dipartimento di Scienze Statistiche e Matematiche "S. Vianelli" – Ateneo di Palermo

♣ Tabelle Dicotomiche

Se le due mutabili considerate possiedono entrambe due sole modalità, che esauriscono tutte le modalità possibili, ossia sono esaustive, la tabella è chiamata tavola dicotomica: per misurarne l'associazione, esistono degli indici specifici.

U	\mathbf{v}_1	\mathbf{v}_2	Totali
u_1	a	b	a + b
u_2	С	d	$\mathbf{c} + \mathbf{d}$
Totali	a + c	b +d	$\overline{\mathbf{N}}$

Nel caso di tavole dicotomiche la verifica sull'esistenza di associazione si basa sul confronto tra a e la frequenza teorica a*

$$a^* = [(a + b) \times (a + c)] / N$$

Se $\mathbf{a} = \mathbf{a}^*$

non c'è associazione;

se $a > a^*$ vi è associazione positiva;

se, invece $\mathbf{a} < \mathbf{a}^*$ l'associazione è di tipo inverso, o negativa.

Tavole Dicotomiche					
Indici	Formule	caratteristiche			
Indice di associazione di Yule	$Q = \frac{ad - bc}{ad + bc}$	- 1 ≤ Q ≤ +1			
Indice di Collegamento	$G = \frac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}}$	- 1 ≤ G ≤ + 1			
Indice di Differenza (Eduards)	$\mathbf{E} = \frac{\mathbf{d}}{(\mathbf{c} + \mathbf{d})} - \frac{\mathbf{b}}{(\mathbf{a} + \mathbf{b})}$	- 1 ≤ E ≤ + 1			
Indice di Pearson	$V = \frac{ad - bc}{\sqrt{(a+b)(c+d)(b+d)(a+c)}}$	- 1 ≤ V ≤ +1 L'indice di Pearson è il più preciso			

Gli indici considerati sono compresi tra -1 e +1:

V = 0 assenza di associazione: le due mutabili sono indipendenti;

V = -1 tra le due mutabili vi è massima associazione negativa, o inversa;

V = +1 tra le due mutabili vi è massima associazione positiva, o diretta;

Prof.ssa G. Balsamo – Dipartimento di Scienze Statistiche e Matematiche "S. Vianelli" – Ateneo di Palermo