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Abstract. The concept of coherent structure is often invoked for the qualitative analysis of the 
wind-induced pressure field acting on bluff bodies. Coherent structures are traditionally 
extracted from the measured data through the Proper Orthogonal Decomposition (or 
Principal Component Analysis, PCA), but serious concerns on their meaningfulness have 
been risen. In an attempt to mitigate these problems, the Independent Component Analysis 
(ICA) has been introduced and demonstrated some potentials to extract coherent structures 
that are consistent with the observed phenomenon in term of some features that are defined in 
this paper. Considering the case of the pressure measured on a square-base prism immersed 
in a turbulent boundary layer with a non-symmetrical configuration, PCA and ICA are 
applied to extract coherent structures. The role of the model order is carefully investigated. 

Sommario. Il concetto di struttura coerente è spesso impiegato nell'analisi qualitativa del 
campo di pressione indotto dal vento in prossimità della superficie di corpi tozzi. Le strutture 
coerenti vengono tradizionalmente estratte dai dati sperimentali attraverso la Proper 
Orthogonal Decomposition (o Principal Component Analysis, PCA), ma i dubbi sulla loro 
interpretazione fisica sono piuttosto diffusi. Allo di chiarire questo problema è stata 
introdotta la Independent Component Analysis (ICA), che ha dimostrato ampie potenzialità 
nell'estrarre pattern coerenti con i fenomeni osservati. Nel presente lavoro sono state 
applicate le tecniche statistiche di espansione modale PCA ed ICA ad un campo di pressione 
originato da uno strato limite turbolento intorno ad un prisma a sezione quadrata. L’enfasi 
dell’analisi è concentrata sull’effetto della dimensione del modello ridotto impiegato per 
analizzare i dati. 
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1 INTRODUCTION  

The use of high-frequency pressure scanners in bluff-body aerodynamics can usually 
provide accurate estimations of both local and global wind-induced actions that can be used 
for design purpose. Besides, the analysis of the recorded time histories may reveal precious 
information on the qualitative behaviour of the flow, detecting the signature of the vortexes 
generated in the neighbourhood of the body and possibly propagate due to advection effects. 
This signature is identified through the observation of highly-correlated regions that appear 
recurrently in the pressure field and are referred to as coherent structures (CS) of the pressure 
field, in analogy with the definition of this term traditionally employed as qualitative 
descriptor of the flow velocity field1. 

The concept of CS has been intimately related to the statistical technique traditionally 
used for their estimation, the Proper Orthogonal Decomposition (POD2), which, in the 
discrete-space context, is often referred to as Principal Component Analysis (PCA). This 
technique represents the random fluctuation of the pressure field as a sum of deterministic 
pressure distributions called modes, modulated by random coefficients (depending on time) 
called Principal Components (PC). PCA has a hierarchical nature in terms of energy: the first 
PCA mode represents the best (in the mean square sense) mono-variate approximation of the 
pressure field and is usually interpreted as the dominant CS or the signature of the dominant 
flow phenomenon acting on the body surface3. Due to its mean-square optimality, PCA has 
been widely applied to identify Reduced-Order Models (ROM) of the measured data and to 
formulate qualitative interpretations of the observed phenomena. In numerous applications 
PCA demonstrated its ability in extracting CSs that resemble the observed physical 
phenomena4, but in many other circumstances serious concerns on their meaningfulness have 
been risen5. In general terms, a meaningful coherent structure should represent a typical or 
recurrent configuration of the pressure field and, if two different physical phenomena 
(characterized by different statistical properties take place) at the same time, they should be 
represented by two different CSs. 

The main source of PCA limitations to extract meaningful CSs has been identified in the 
orthogonality of its modes that, from a physical point of view, does not have any justification. 
To overcome this constraint, the use of non-orthogonal modal expansions based on the 
Independent Component Analysis (ICA6) have been adopted7,8 demonstrating that, at least in 
the applications discussed in these references, the above requirements for the meaningfulness 
of the CSs are well fulfilled. 

ICA is usually formulated assuming that the measured data derive from a generative 
model in which unknown sources, said Independent Components (IC), are instantaneously 
mixed by an unknown matrix referred to as mixing matrix. ICs and mixing matrix are 
estimated from the data exploiting the condition that the ICs are mutually statistically 
independent. This kind of hypothesis is obviously correct when ICA is used to solve the Blind 
Source Separation (BSS) problem, in which the existence of independent (though unknown) 
sources is postulated, but may be questionable when ICA is applied as a feature-recognition 
tool for the extraction of the CSs. In this case, the concept of virtual source9 may be invoked, 
but the issue of estimating the appropriate number of these sources may become critical. This 
is a major problem in synthesizing an ICA model from measured data and is related to the 
different behavior that PCA and ICA representations have as the model order is increased. In 
particular, when working with PCA, the passage from a model with order n to a model with 
order n + 1 only involves the introduction of a new mode, without changing the modes from 1 
to n. On the contrary, increasing the order of an ICA model produces, in general, the 
modification of all the modes involved in the representation. Indeed, even if the ICA model 
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spans the same data subspace as the PCA model of the same order, ICA modes are determined 
by an optimization problem, whose result may change as fresh information are added 
increasing the model order. For this reason, it is clear that the model order should be selected 
as large enough to represent the relevant part of the observation, but not larger. 

In the present paper PCA and ICA are applied to derive a qualitative description of the 
flow past a square-base prism immersed in a turbulent boundary layer at 15° angle of 
incidence. This condition is selected because it produces a very rich dynamics of the flow 
field. On the lateral face exposed to the wind the flow reattaches creating an oscillating 
recirculation bubble, while on the opposite lateral face the boundary layer is fully separated. 
This particular case study is used to discuss the ability of PCA and ICA to extract CSs that are 
meaningful in the sense defined above. The role of the model order in ICA representation is 
carefully investigated and some indicators able to guide its selection are proposed. 

2 COHERENT STRUCTURES AND MODAL REPRESENTATIONS 

The concept of CS is intimately related to the modal expansion adopted to represent the 
pressure field. In this sense, since an infinite class of modal representations can be formulated, 
an infinite set of different CSs can be associated to the same random field. This section 
describes the formulation of PCA and ICA with particular emphasis on their ability of 
synthesizing Reduced-Order Models (ROMs); furthermore it shows the application of these 
techniques to the qualitative study of the pressure field generated on a square-base prism 
immersed in a turbulent boundary layer. The experiment has been carried out in the wind 
tunnel of the University of Genova in which the model (height h = 40 cm, aspect ratio 5:1) 
has been oriented according to the angle of incidence α = 15°. The mean wind velocity profile 
corresponds to a power law with exponent 0.22; at the top level of the model the mean wind 
velocity is U = 12.2 m/s, the intensity of the longitudinal turbulence is Iu = 13% and its 
integral length scale is Lu = 40 cm. The pressure field is observed along a mono-dimensional 
domain constituted by an instrumented ring of N = 28 pressure taps located at z = 0.6h and 
connected through short tubes to a 32-channel PSI pressure scanner mounted inside the 
model. For this purpose, let q(t)=[q1(t),…,qN(t)]T be an N-variate random process containing 
the zero-mean fluctuation of the measurements deriving from the pressure taps; t is the 
discretized time. 

The configuration chosen for the present discussion is particularly interesting since it 
corresponds to the angle in which the lift coefficient of a square cylinder in smooth flow 
changes its slope due to the reattachment of the boundary layer on the Windward Lateral Face 
(WLF), while on the Leeward Lateral Face (LLF) the boundary layer remains completely 
separated10. In the present three-dimensional condition, with turbulent incoming flow, the 
situation is surely more complicated but some traces of this deep difference in the flow past 
the two lateral faces is expected to appear in the statistical representation of the pressure data. 

The observed phenomenon is assumed to be statistically stationary and ergodic, thus time 
averaging is used as a surrogate of ensemble averaging to estimate any statistical quantity. 

2.1 Principal Component Analysis (PCA) 

Let Cqq be the zero-time-lag covariance matrix of q estimated from the data as: 

 ( ) ( )T
E t t =
 qqC q q  (1) 
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in which the statistical expectation E[⋅]. According to PCA, q(t) is represented by the modal 
expansion: 

 

( ) ( )
1

N

k k
k

t x t
=

= =∑q xφ Φφ Φφ Φφ Φ
 (2) 

where the vectors φφφφk (k = 1,…,N), usually called modes, are the eigenvectors of Cqq, i.e. the 
solutions of the problem: 

 ( )1, ,k k k k N= λ =qqC …φ φφ φφ φφ φ  (3) 

The eigenvectors are mutually orthogonal, are conventionally normalized to have unit 
norm and are assembled column-wise in the matrix ΦΦΦΦ. The coefficients xk are referred to as 
the Principal Components (PC) of the process and are assembled in the vector x = [x1,…,xN]T; 
they are mutually uncorrelated and their variance is provided by the eigenvalues λk. 
Eigenvectors and PCs are enumerated in such a way that their corresponding eigenvalues are 
sorted in decreasing order.  

For practical purpose, a truncated version of Eq. (2) is defined through the partial sum: 
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1

n
n n n

k k
k

x
=

= =∑q xφ Φφ Φφ Φφ Φ
 (4) 

where ΦΦΦΦ(n) and x(n) contains the first n ≤ N PCA modes and PCs, respectively. The vector q(n) 
represents the best (in the mean square sense) n-variate approximation of q. For this reason 
Eq. (4) is often used to synthesize ROMs, calibrating the model order n in such a way to 
retain the significant part of the observation and cancel the noise. 

The PCs can be calculated from the data through a simple orthogonal projection, i.e.: 

 ( )( ) ( ) ( )( ) ( ) ( )
T Tn nn nt t t= =x Φ q Φ q  (5) 

In the context of bluff-body aerodynamics, the use of PCA as a feature-recognition tool to 
identify typical or recurrent pressure patterns, possibly associated to some specific physical 
phenomenon, has been experimented by several authors11.Sometimes the results of the 
analyses appeared encouraging, but there is a general opinion that PCA modes is unable to 
identify physically-meaningful CSs5. A major reason of this failure is believed to derive from 
the orthogonality constraint of the modal shapes that is intrinsically present in PCA7-8 and has 
no physical justification. 

Figure 1 shows the first 6 PCA modes extracted from the data. The relative importance of 
each mode in the representation of the pressure field is quantified through the quantity 
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reported in Figure 1 for reference; the 6th-order ROM defined through these modes retains 
about 93% of the Standard Deviation (SD) of the full-order dataset. Mode 1 represents a 
pressure distribution acting on the windward face and provides about 67% of the SD of ||q||. 
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The pressure on the LLF is represented, with a similar spatial distribution, by modes 2, 3 and 
4. All the reported modes provide a contribution to the pressure field acting on the WLF, with 
higher-order modes representing details characterized by a smaller spatial scale. This latter 
behaviour is encountered quite commonly in PCA applications and is essentially due to the 
orthogonality constraint that is implicitly involved in the definition of the modes. Besides, it is 
worth noting that, even if the pressure fields acting on the two lateral faces have very different 
statistical properties (i.e. different probability distribution, spectral properties, propagation 
velocity), several modes provide contributions on both the lateral faces (modes 2, 3, 4). 

φ1 φ2 φ3 φ4 φ5 φ6

0.2

 

Figure 1: PCA modes φφφφ1 to φφφφ6. 

2.2 Independent Component Analysis (ICA) 

ICA is usually formalized assuming that the observed data q(t) are produced by a 
generative model of the kind6: 

 
( ) ( )t t=q As  (7) 

where s is a vector of n ≤ N statistically independent sources sk (k = 1,…,n) said independent 
components (IC) and A is an N×n full-rank matrix referred to as mixing matrix. The ICA 
model postulates the existence of an unknown number n of unknown statistically independent 
sources that are statically (i.e. with no memory) mixed by an unknown mixing matrix. This 
formulation is clearly tailored on the Blind Source Separation (BSS) problem, whose solution 
can be obtained through three conceptual steps: 1 – the number of sources n is identified as 
the number of non-zero eigenvalues of Cqq; 2 – the mixing matrix A is obtained imposing that 
the sources sk are statistically independent; 3 – the ICs are calculated by solving the linear 
system (7), which is possible since q is in the range of A for any t.  

In case the IC mixture is contaminated by additive noise Eq. (7) holds in an approximate 
sense and can be rewritten as: 

 

( )( ) ( )n t t=q As
 (8) 

where n is estimated by counting the eigenvalues of Cqq that are above a suitable 
threshold and q(n) is a reduced version of q obtained through Eq. (4). 

Under the condition that all (but possibly one) ICs have non-Gaussian distribution, the 
ICA problem as formulated above has a solution, which is unique up to scaling and 
permutation of the Ics6. To avoid permutation and scaling indeterminacy, the ICs are 
conventionally assumed as unit variance and are enumerated in such a way the columns ak of 
the matrix A have decreasing norm. 

The ICA model (Eq. (8)) is analogous to the representation formula offered by PCA (Eq. 
(4)), with the difference that the columns ak of the matrix A are, in general, non-orthogonal 
and that the ICs sk are now statistically independent (instead of simply uncorrelated like the 
PCs xk). Due to this analogy, ICA can be used as tool to estimate CSs from experimental 
datasets7-8. When ICA is applied for this purpose, the situation becomes more complicated 

6 0.93Σ =4 0.88Σ =3 0.84Σ = 5 0.91Σ =
2 0.76Σ =1 0.65Σ =
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than for the BSS problem since the ICs are usually not explicitly present in the observed 
physical system and the concept of virtual source9 must be invoked. Virtual sources, however, 
are not necessarily statistically independent thus the ICA problem should be reformulated as: 
given the observed data q, find a suitable number n of virtual sources that are as much 
statistically independent as possible and provide an nth-order approximation of q through Eq. 
(8). Also in this case the choice of the model order n may be based on the eigenvalues of Cqq, 
however the brute application of this criterion can be troublesome. 

The use of ICA as a feature-recognition tool for the analysis of random pressure fields is 
interpreted as the search for a set of CSs, which evolve in time with amplitudes that are as 
much statistically independent as possible. 
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Figure 2: ICA modes for model orders n = 2 to 8 
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It has been observed that, working with ICA representations, the choice of the model 
order n can be more critical than for PCA. To investigate this issue, Figure 2 shows the ICA 
modes estimated for model orders n from 2 to 8. For each model, modes are plotted row-wise, 
sorted with respect to their norm and labeled with a letter (from a to h) on the basis of their 
shape. As the model order increases some modes (modes a, b and f) stabilize on a particular 
shape, while other modes split into different modes (modes c, d, e, g, h). The former behavior 
belongs to the modes representing the pressure field on the windward face (mode a), on the 
LLF (mode b) and on the leeward face (mode f); the latter behavior is shown by the modes 
involved in the representation of the pressure on the WLF (modes c, d, e, g, h). 
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Figure 3: Entropy of the ICs (a), mutual information between pairs of ICs (b) as functions of the model order. 

Figure 3 describes a complementary aspect of this evolution. Figure 3a shows the 
differential entropy of the ICs corresponding to ICA modes a to g, defined as: 

 ( ) ( ) ( ) ( )log d , ,
k kk s sH s p p k a g

∞

−∞

 = − ξ ξ ξ = ∫ …  (9) 

where psk is the pdf of the kth IC. As the model order increases, the entropy of the ICs tends to 
decrease, indicating an increment of their non-Gaussianity (the maximum entropy 
corresponding to the Gaussian distribution is reported with dotted line). On the other hand, the 
reduction of entropy reflects a reduction of the information content carried by each IC, which, 
in some sense, tends to distill a specific feature of the observed phenomenon. Figure 3b 
shows, for different model orders, the mutual information between pairs of ICs defined as: 

  ( ) ( )
( )

( ) ( ) ( )
2
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, , log d d , 1, ,j k

j k
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s s

j k s s
sj s

p
I s s p j k n

p p

ξ η 
= ξ η ξ η = 

ξ η  
∫
ℝ

…  (10) 

where psjsk is the joint pdf of the j th and kth ICs. The mutual information can be interpreted as a 
measure of the statistical dependency of two random variables, or from an information theory 
view point, it measures the overlapping of the information carried by sj and sk. The mutual 
information can be used as a guide to select the model order, for example excluding those 
orders that produce IC pairs with large mutual information (like n = 4 in the present 
application), and privileging the orders for which the mutual information of IC pairs are 
clustered about small values (like n = 7, 8 in the present application). 
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3 CONCLUSIONS 

PCA and ICA have been applied to estimate the CSs of the wind-induced pressure field 
acting on a square-base prism immersed in a turbulent boundary layer with a non-symmetrical 
configuration. The focus of the discussion has been on understanding whether or not these 
CSs are meaningful representing separately (i.e. in different modes) parts of the pressure field 
with distinct statistical characteristics and on the problem of the sub-space dimension. In 
particular, the following conclusions can be proposed: 
1. PCA is unable to separate the pressure fluctuation acting on different parts of the prism 

cross section, even if they have very different statistical characteristics; on the contrary, 
ICA separates in different modes the pressure field acting on the four faces of the prism. 

2. Up to the model order 8, ICA use a large number of modes to represent the pressure acting 
on the WLF, while on the other faces a single mode is employed. This behavior is 
determined by the weaker spatial correlation present on the WLF. 

3. The choice of the most appropriate model order for ICA may be critical; the tracking of the 
mode stability for different model orders, as well as the study of entropy and mutual 
information of the ICs are a valuable guides for the order selection. 
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