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Abstract. In this paper, the lattice Boltzmann method is used to investigate the behavior of 
two symmetric flapping wings. First, the theoretical and computational aspects of such 
method are discussed, as well as its statistical background. Then, findings for rigid and 
deformable wings are illustrated, showing how this methodology can predict the lift 
generation due to the motion of the flapping wings. 

Sommario. In questo documento, il metodo lattice Boltzmann è usato per descrivere il 
comportamento di due ali simmetriche. Per prima cosa, gli aspetti teorici e computazionali di 
tale metodo sono discussi insieme al background statistico. Successivamente, i risultati 
ottenuti per ali rigide e deformabili sono illustrati, mettendo in luce come questa metodologia 
possa predire la generazione di una forza di lift dovuta al moto delle ali. 
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1 INTRODUCTION 

A deep understanding of the main mechanical factors regulating the flapping flight of winged 
insects is extremely important for bio-inspired designing of microscale air vehicles. 
Bi-dimensional symmetric flapping flight was recently addressed by Ota et al. in [1]. They 
assumed the wings as rigid beams and investigated numerically the effect of the Reynolds 
number in the range 40-200. For high Reynolds numbers (that is greater than 55) they found 
that asymmetric vortices develop and a lift force is generated, while for low Reynolds 
numbers (that is lesser than 50) symmetric vortices are stable and no lift force is generated. 
Moreover, for a certain range of Reynolds numbers (that is between 55 and 110), they 
observed a bi-stable phenomenon with the wings going upward or downward depending on 
disturbances. 
In this paper, bi-dimensional symmetric flapping flight is investigated by focusing the 
attention on the effect of wings flexibility. The study is carried out trough a numerical 
approach recently developed by the authors for fluid-structure interaction problems, that 
properly couples the Lattice Boltzmann method as fluid solver and the Finite Element 
methods as structure solver [2,3]. 
In Section 2, the Lattice Boltzmann method and its statistical background are briefly recalled. 
In Section 3, the main features of the adopted numerical algorithm are emphasized. Section 4 
presents the main results obtained for symmetric flexible flapping wings. Some conclusions 
are drawn in Section 5. 

2 LATTICE BOLTZMANN METHOD 

The state of a fluid is quantitatively described through the Navier-Stokes equations, based on 
the conservation of mass, energy and momentum and on the assumption that the fluid is a 
continuous material, which is to say that properties are space-filling fields and vary 
continuously in space and time (i.e. the so-called "continuum hypothesis"). 
Nevertheless, a fluid is composed of small particles, atoms and molecules, that interact each 
other, and the fluid motion is ultimately determined by these interactions.  
The Lattice Boltzmann Method (LBM) stands in an intermediate (mesoscopic) level of fluids 
description, in which a statistical molecular-level interpretation of macroscopic fluid 
dynamics is performed. The fluid composed of a large number of particles is represented in 
terms of the probability (density distribution) f r,v, t( )  of finding a given particle at a given 

position in space, r , and time, t, with a given velocity, v . The base equation is the 
Boltzmann's equation, established already in 1854 for the kinetic theory of ideal gases by 
Maxwell and Boltzmann, that described how the particle distribution of a diluted fluid 
changes with time [4,5]: 

Cf
t

f =∇⋅+
∂
∂

v . (1) 

The above equation states that the free streaming of the particles (left-hand side) equals the 

changes in the probability distribution function f r,v, t( )  induced by inter-particle collisions 

(right-hand side). This statistical approach, although much more economical than the 
atomistic description, still provides much more information than the continuum description, 
since the distribution function lives in a six-dimensional space (phase-space) spanned by the 
particle position r  and velocity v . The LBE is obtained by assuming that at each site the 
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particles can only move along a finite number of directions, thus reducing the velocity space 
to a handful of discrete values v =ci, i= 0,…n, and by integrating Equation (1) along these 
characteristic directions: 

fi( r  + ci ∆t, t+∆t) = fi(ci,t)+∆t(fi
eq- fi)/τ� (2) 

being ∆t the time step. Particle collisions are represented through a relaxation to a local 
equilibrium, being τ the relaxation time, after the Bathnagar-Gross-Krook (BGK) 
approximation [6]. The discrete local equilibria are typically given by a second-order 
expansion in the Mach-number of a local Maxwellian equilibrium, i.e. 

fi
eq( r ,t)=wi ρ(1+ua cia/cs

2+(ua ub Qiab)/(2cs
4)), (3) 

where ρ is the density, wi is a set of weights normalized to unity, Qiab = cia cib - cs
2 δab is the 

quadrupole projector along the i-th direction of the components cia and cib of vectors ci, δab is 
the Kronecker delta, ua is a component of the fluid velocity u, and cs

2= Σi wi ci
2/D is the 

lattice sound speed in D dimensions. Notice that in the above relation Einstein summation 
convention is adopted. If the set of discrete speeds ci is chosen with sufficient symmetries to 
fulfill the basic conservation laws of mass, momentum and energy, the large-scale limit 
(Chapman-Enskog expansion) of Equation (2) recovers the incompressible, isothermal, 
Navier-Stokes equations [7], with a kinematic viscosity  

ν = cs
2(τ-∆t/2), (4) 

with fluid mass density and velocity determined by the zeroth and first order kinetic moments 
of the probability distribution functions, as follows:  

ρ( r ,t) = Σi fi(r ,t), (5) 

ρ( r ,t)u( r ,t) =Σi fi(r ,t)ci. (6) 

In this work we refer to the D2Q9 particles speed model: a standard 9-speed, two-dimensional 
lattice, with n=8 (including a zero-speed particle), as shown in Figure 1. Apparently, the LBM 
is only first-order accurate in time. Indeed, the LBM is a first-order scheme for the continuum 
LBE with a viscosity ν = cs

2τ� but becomes second-order for the same equation, with a shifted 
viscosity defined in Equation (4). This shift is an issue, since it permits to achieve vanishing 
low viscosities without taking the relaxation parameter τ and the time step ∆t to 
correspondingly vanishing small values, thereby avoiding the time-step collapse and the 
ensuing dramatic drop in computational efficiency. 
The most attractive features of this probabilistic approach to fluid dynamics are the 
conceptual and practical simplicity of the computational scheme and the nearly ideal 
amenability to parallel computing. Moreover, non-locality (streaming) is linear and non-
linearity (collision) is local in contrast with the Navier-Stokes equations, in which the 
transport term is both non-local and non-linear. 
For solving fluid-structure interaction problems, the LBM has two further advantages: 
1) handling boundary conditions associated with highly irregular geometries by means of 
elementary mechanical operations on the probability distribution functions (bounce-back, 
reflections); 
2) local availability of fluid pressure p through the ideal equation of state and of stress tensor 
Σ as linear combinations of the equilibrium and non-equilibrium components of the 
probability distribution function: 
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p( r ,t)=ρ( r ,t) cs
2, (7) 

Σ(r ,t)= -p( r ,t)I – (1-∆t/(2τ)) Σi(fi
eq- fi)ci ⊗  ci, (8) 

where I is the identity tensor. This means that the force acting on a solid body can be obtained 
from the flow field configuration with no need of solving a (usually very expensive) Poisson 
problem and of calculating and interpolating velocity derivatives. 

 
Figure 1: D2Q9 model. Lattice grid, particle distribution function and velocity vectors. 

3 FLUID-STRUCTURE INTERACTION 

As above assessed, the lattice Boltzmann method is used as the fluid solver. On the other 
hand, flapping wings are modeled by using the finite element method. In particular, beam 
elements are employed and large displacements are accounted for by means of the 
corotational formulation [8,9]. Structural dynamics is integrated by using the Time 
Discontinuous Galerkin method [10]. If the wings are rigid, the TDG method is used to 
update the position of the center of mass [11,12], while the boundary condition described in 
[13,14] is adopted to account for the position of the wings in the fluid domain. The numerical 
scheme proposed in [13] is used in order to achieve second-order accurate results [14]. An 
implicit predictor-based coupling algorithm has been implemented [2,3] to transfer 
information between the fluid and the solid solvers, thus satisfying equilibrium and 
compatibility conditions at the fluid-structure interface. 

4 FLAPPING WINGS 

A two-dimensional symmetric flapping wing is immersed in a viscous, incompressible 
fluid characterized by density ρ and viscosity ν. Wings can travel only in vertical direction. 
Two different scenarios are investigated: rigid and flexible wings. The wings are represented 
by two beams with length L connected to a hinge where the mass of the whole set is 
concentrated, as shown in Figure 2. At the time t, the angular position θ(t) is given by 
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θ(t) = ∆θ cos(2πt/T), (8) 

����� ∆θ is the amplitude, T is the period of the harmonic oscillation, and the time-
averaged tip velocity is defined as 

utip=4L∆θ/Τ. (9) 

According to [15], the following parameters corresponding to a butterfly are used: wing mass 
3.5x10-6 kg, body mass 5.0x10-5 kg, hinge-wing distance l=5.0x10-3 m, two-dimensional air 
density ρ0=7. 0x10-3 kg/m2. Notice that the total mass is equal to m = 5.7x10-5 kg. 
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Figure 2: Schematic of the problem definition. 

 
The dimensionless parameters of the problem are: the Reynolds number Re= utip l/ν, the 
dimensionless mass M, the dimensionless bending stiffness EJ and the Froude number, Fr 
=1/g, where g is the gravity acceleration. The mass is normalized by ρ0l

2 and the bending 
stiffness by ρ0l

3utip
2.Moreover, in the following the wings position is normalized by L. In 

order to avoid high velocities in the flow field due to the motion of the wings, the grid 
dimensions are chosen in such a way that the maximum tangential velocity is less than cs/3. In 
particular, for Re=40 the grid consists of 1440x720 lattice nodes and the wings are modeled 
by using 60 elements, while at Re=200 the dimensions are 1920x960 and 80 beam elements 
are used. 
First, the effect of the Reynolds number is discussed. As it is possible to observe in Figure 3, 
a very close agreement between the present solution and the results obtained in [1] is 
achieved. Notice that at Re=200 the wings successfully go upward, while at Re=40 they tend 
to oscillate about a fixed position. 
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Figure 3: Effect of the Reynolds number. 
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Then, the effect of wings flexibility is investigated. Figure 4 shows the dimensionless 
trajectory for different values of the dimensionless bending stiffness EJ. Gravity is neglected 
and the dimensionless mass is M=9.05. Various amplitudes are considered: ∆θ=15°, ∆θ=30°, 
∆θ=46.8°. 

               

                              a)              b) 

    c) d) 

             

        e)                           f) 

Figure 4: Influence of the dimensionless bending stiffness on the dimensionless position y/L of the center of the 
wings for different amplitudes and masses: a) ∆θ=15°, b) ∆θ=30°, c) ∆θ=46.8° with M=9.05, and d)M=4.53, e) 
M=9.05, f) M=36.2 with ∆θ=46.8°.  

As we can observe, the larger the amplitude, the faster the take-off is. Moreover, the bending 
stiffness plays an important role, since the bird goes upward faster for large values of EJ. For 
a certain flapping amplitude, ∆θ=46.8°, three different values of the dimensionless mass are 
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used: M=4.53, M=9.05 and M=36.2. Also in this case, gravity is neglected and the influence 
of the mass is shown. In particular, at M=4.53 and M=9.05 the wings go successfully upward, 
whereas at M=36.2 the trajectory moves in downward direction.  
Finally, the effect of the gravity is investigated by varying the Froude number in Figure 6. 
The dimensionless mass is M=9.05 and the maximum amplitude is set to ∆θ=45°. As 
expected, when the gravitational force increases, the take off becomes arduous. 

    a)       b)      

    c) 

Figure 6: Influence of the dimensionless bending stiffness on the dimensionless position y/L of the center of the 
wings for different Froude numbers: a) Fr=8, b) Fr=7, c) Fr=6. 

5 CONCLUSIONS 

In this work, the behavior of two symmetric flapping wings immersed in a viscous fluid 
has been investigated. First, assuming the wings are rigid, the effect of the Reynolds 
number has been shown. In particular, at Re=200 the wings move upward from the 
original position. Then, the assumption of rigid wings has been removed. The effect of the 
bending stiffness has been shown for different conditions, i.e. various values of amplitude, 
mass and Froude numbers. Results show that the lower the bending stiffness, the more 
difficult the take off is. Such behavior is due to the fact that the energy generated by the 
motion is partially absorbed by the deformation of the wings, which increases if the 
bending stiffness decreases. 
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