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Abstract. In this paper, the lattice Boltzmann method isduseinvestigate the behavior of
two symmetric flapping wings. First, the theoretieand computational aspects of such
method are discussed, as well as its statisticalkgeound. Then, findings for rigid and
deformable wings are illustrated, showing how thmethodology can predict the lift
generation due to the motion of the flapping wings.

Sommario. In questo documento, il metodo lattice Boltzmannsato per descrivere il
comportamento di due ali simmetriche. Per primaacagi aspetti teorici e computazionali di
tale metodo sono discussi insieme al backgrountissta. Successivamente, i risultati
ottenuti per ali rigide e deformabili sono illustramettendo in luce come questa metodologia
possa predire la generazione di una forza di Idvdta al moto delle ali.
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1 INTRODUCTION

A deep understanding of the main mechanical factggalating the flapping flight of winged
insects is extremely important for bio-inspiredigesig of microscale air vehicles.
Bi-dimensional symmetric flapping flight was redgnaddressed by Ota et al. in [1]. They
assumed the wings as rigid beams and investigaietemncally the effect of the Reynolds
number in the range 40-200. For high Reynolds nusfibat is greater than 55) they found
that asymmetric vortices develop and a lift forsegenerated, while for low Reynolds
numbers (that is lesser than 50) symmetric vortaresstable and no lift force is generated.
Moreover, for a certain range of Reynolds numbéhst(is between 55 and 110), they
observed a bi-stable phenomenon with the wingsggapward or downward depending on
disturbances.

In this paper, bi-dimensional symmetric flappingglit is investigated by focusing the
attention on the effect of wings flexibility. Theaudy is carried out trough a numerical
approach recently developed by the authors fod4tiucture interaction problems, that
properly couples the Lattice Boltzmann method asdflsolver and the Finite Element
methods as structure solver [2,3].

In Section 2, the Lattice Boltzmann method andtigdistical background are briefly recalled.
In Section 3, the main features of the adopted mgalealgorithm are emphasized. Section 4
presents the main results obtained for symmetexilile flapping wings. Some conclusions
are drawn in Section 5.

2 LATTICE BOLTZMANN METHOD

The state of a fluid is quantitatively describetbtigh the Navier-Stokes equations, based on
the conservation of mass, energy and momentum aritieo assumption that the fluid is a
continuous material, which is to say that propertee space-filling fields and vary
continuously in space and time (i.e. the so-cadltestinuum hypothesis").

Nevertheless, a fluid is composed of small pasiceoms and molecules, that interact each
other, and the fluid motion is ultimately determdri®y these interactions.

The Lattice Boltzmann Method (LBM) stands in aremtediate (mesoscopic) level of fluids
description, in which a statistical molecular-levigiterpretation of macroscopic fluid
dynamics is performed. The fluid composed of adangmber of particles is represented in

terms of theprobability (density distribution)‘(r,v,t) of finding a given particle at a given

position in spacel, and time,t, with a given velocity,v. The base equation is the
Boltzmann's equation, established already in 1&B&4tHe kinetic theory of ideal gases by
Maxwell and Boltzmann, that described how the pkatidistribution of a diluted fluid
changes with time [4,5]:

of
—+v[Of =C.
ot 1)

The above equation states that the free streanfitigegparticles (left-hand side) equals the
changes in th@robability distribution functiorf(r,v,t) induced by inter-particle collisions

(right-hand side). This statistical approach, alfio much more economical than the
atomistic description, still provides much moreommhation than the continuum description,

since the distribution function lives in a six-dinsgonal space (phase-space) spanned by the
particle positionr and velocityv. The LBE is obtained by assuming that at eachthite

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 26-33 27



A. De Rosis, G. Falcucci, S. Ubertini, F. Ubertini

particles can only move along a finite number eéclions, thus reducing the velocity space
to a handful of discrete values=c;, i=0,...n and by integrating Equation (1) along these
characteristic directions:

fi(r + ¢ 4, t+4t) = fi(c, )+ 4t(f°% )/t 2

being 4t the time step. Particle collisions are represertbedugh a relaxation to a local
equilibrium, being T the relaxation time, after the Bathnagar-GrosseKro(BGK)
approximation [6]. The discrete local equilibriaeatypically given by a second-order
expansion in the Mach-number of a local Maxwelkguilibrium, i.e.

fi84(r ,t)=wi P(1+Ua Ca/Cs™+ (Ua Up Qan)/(2¢5Y)), (3)

wherepis the densityw; is a set of weights normalized to unias = Cia Cib - G Oap iS the
guadrupole projector along tlwth direction of the components andcy, of vectorsc;, & IS
the Kronecker deltay, is a component of the fluid velocity, andc?= 5 w ¢%/D is the
lattice sound speed iD dimensions. Notice that in the above relation &imssummation
convention is adopted. If the set of discrete spee chosen with sufficient symmetries to
fulfill the basic conservation laws of mass, momemtand energy, the large-scale limit
(Chapman-Enskog expansion) of Equation (2) recovkes incompressible, isothermal,
Navier-Stokes equations [7], with a kinematic viEtp

v=c(r-4t/2), (4)

with fluid mass density and velocity determinedthg zeroth and first order kinetic moments
of the probability distribution functions, as fais:

or 1) = 5 f(r ), )

o(r u(r b =5 fi(r 0. (6)

In this work we refer to the D2Q9 particles speemtlet: a standard 9-speed, two-dimensional
lattice, withn=8 (including a zero-speed patrticle), as shownigufe 1. Apparently, the LBM

is only first-order accurate in time. Indeed, tH&MLis a first-order scheme for the continuum
LBE with a viscosityv = ¢ 1 but becomes second-order for the same equatiom ashifted
viscosity defined in Equation (4). This shift is @sue, since it permits to achieve vanishing
low viscosities without taking the relaxation paester 7 and the time stepdt to
correspondingly vanishing small values, therebyidgiag the time-step collapse and the
ensuing dramatic drop in computational efficiency.

The most attractive features of this probabilisipproach to fluid dynamics are the
conceptual and practical simplicity of the compiotaél scheme and the nearly ideal
amenability to parallel computing. Moreover, nouodbty (streaming) is linear and non-
linearity (collision) is local in contrast with thBlavier-Stokes equations, in which the
transport term is both non-local and non-linear.

For solving fluid-structure interaction problemise LBM has two further advantages:

1) handling boundary conditions associated withhlyigrregular geometries by means of
elementary mechanical operations on the probabhidlisgribution functions (bounce-back,
reflections);

2) local availability of fluid pressurne through the ideal equation of state and of strelssar

> as linear combinations of the equilibrium and meguilibrium components of the
probability distribution function:
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p(rH=p( 1.9 ¢, (7)

2(r.9=-p(r ol —(1-4(20) Z(f** f)cio ¢, (8)

wherel is the identity tensor. This means that the facing on a solid body can be obtained
from the flow field configuration with no need afdlging a (usually very expensive) Poisson
problem and of calculating and interpolating veipderivatives.

Figure 1: D2Q9 model. Lattice grid, particle distriion function and velocity vectors.

3 FLUID-STRUCTURE INTERACTION

As above assessed, the lattice Boltzmann methosed as the fluid solver. On the other
hand, flapping wings are modeled by using the ditement method. In particular, beam
elements are employed and large displacements ereumted for by means of the
corotational formulation [8,9]. Structural dynamids integrated by using the Time
Discontinuous Galerkin method [10]. If the wings aigid, the TDG method is used to
update the position of the center of mass [11,4B]le the boundary condition described in
[13,14] is adopted to account for the positionha wings in the fluid domain. The numerical
scheme proposed in [13] is used in order to achsaw®nd-order accurate results [14]. An
implicit predictor-based coupling algorithm has meéenplemented [2,3] to transfer
information between the fluid and the solid solyetBus satisfying equilibrium and
compatibility conditions at the fluid-structure éntace.

4 FLAPPING WINGS

A two-dimensional symmetric flapping wing is immedsin a viscous, incompressible
fluid characterized by densify and viscosityv. Wings can travel only in vertical direction.
Two different scenarios are investigated: rigid #ledible wings. The wings are represented
by two beams with length connected to a hinge where the mass of the whetless
concentrated, as shown in Figure 2. At the tiptee angular positioAt) is given by
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At) = AGcos(2/T), (8)

D000 A@is the amplitude,T is the period of the harmonic oscillation, and three-
averaged tip velocity is defined as
Utip:4LA3/7-. (9)

According to [15], the following parameters corresging to a butterfly are used: wing mass
3.5x10° kg, body mass 5.0xT0kg, hinge-wing distanck=5.0x10° m, two-dimensional air
densitypo=7. 0x10® kg/n?. Notice that the total mass is equairie 5.7x10°kg.

Ya

6t) \ ~c 241

/
2R &
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Figure 2: Schematic of the problem definition.

The dimensionless parameters of the problem aee:Riynolds numbeRe= u;, I/v, the
dimensionless magel, the dimensionless bending stiffnésd and the Froude numbédgy
=1/g, whereg is the gravity acceleration. The mass is normdlizg pol* and the bending
stiffness bypol3uﬂp2.Moreover, in the following the wings position i®rmalized byL. In
order to avoid high velocities in the flow field éuo the motion of the wings, the grid
dimensions are chosen in such a way that the mamitangential velocity is less thag3: In
particular, forRe=40 the grid consists of 1440x720 lattice nodes thedwings are modeled
by using 60 elements, while Re=200 the dimensions are 1920x960 and 80 beam etemen
are used.

First, the effect of the Reynolds number is diseds4#\s it is possible to observe in Figure 3,
a very close agreement between the present solainohthe results obtained in [1] is
achieved. Notice that &e=200 the wings successfully go upward, whildRat40 they tend
to oscillate about a fixed position.
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Figure 3: Effect of the Reynolds number.
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Then, the effect of wings flexibility is investigat. Figure 4 shows the dimensionless
trajectory for different values of the dimensiosld®ending stiffnesgJ. Gravity is neglected
and the dimensionless mas$s9.05. Various amplitudes are considerg=15°, 46=30°,
A6=46.8°.
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Figure 4: Influence of the dimensionless bendirfinstss on the dimensionless positigh of the center of the
wings for different amplitudes and massesZ&¥15°, b) 46=30°, ¢) 46=46.8° with M=9.05, and d)M=4.53, e)
M=9.05, f) M=36.2with 46=46.8°.

As we can observe, the larger the amplitude, thefdahe take-off is. Moreover, the bending
stiffness plays an important role, since the bimdggupward faster for large valueseak For
a certain flapping amplitude]&=46.8° three different values of the dimensionless naaes
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used:M=4.53, M=9.05 andM=36.2. Also in this case, gravity is neglected and tifeuence
of the mass is shown. In particularMt4.53 andM=9.05 the wings go successfully upward,
whereas aM=36.2 the trajectory moves in downward direction.

Finally, the effect of the gravity is investigategl varying the Froude number in Figure 6.
The dimensionless mass M=9.05 and the maximum amplitude is set fi=45°. As
expected, when the gravitational force increasestdke off becomes arduous.
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Figure 6: Influence of the dimensionless bendinfinstss on the dimensionless positigh of the center of the
wings for different Froude numbers: =8, b)Fr=7, c)Fr=6.

5 CONCLUSIONS

In this work, the behavior of two symmetric flapgiwings immersed in a viscous fluid
has been investigated. First, assuming the wingsrigid, the effect of the Reynolds
number has been shown. In particular,R&=200 the wings move upward from the
original position. Then, the assumption of rigichgs has been removed. The effect of the
bending stiffness has been shown for different dook, i.e. various values of amplitude,
mass and Froude numbers. Results show that ther ltheebending stiffness, the more
difficult the take off is. Such behavior is duette fact that the energy generated by the
motion is partially absorbed by the deformationtbé& wings, which increases if the
bending stiffness decreases.
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