

Meccanica dei Materiali e delle Strutture
Vol. 3 (2012), no.4, pp. 10-17

ISSN: 2035-679X
Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, Dei Materiali

DICAM

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 10

SLANGTNG - SOFTWARE FOR STOCHASTIC STRUCTURAL
ANALYSIS MADE EASY

Christian Bucher* , Sebastian Wolff†

*
 Center of Mechanics and Structural Dynamics

Vienna University of Technology
Karlsplatz 13, A-1040 Vienna, Austria
e-mail: christian.bucher@tuwien.ac.at

† DYNARDO Austria GmbH

Wagenseilgasse 14, A-1120 Vienna, Austria
e-mail: sebastian.wolff@dynardo.at

(Ricevuto 10 Giugno 2012, Accettato 10 Ottobre 2012)

Key words: computational methods, structural mechanics, stochastic analysis, probability
theory, software development.

Abstract. Most engineering problems are so complex that the solution requires the
application of computer-based numerical algorithms. For research purposes (particularly for
algorithmic developments) interpreted scripting languages are chosen as the primary tools.
While this enables rapid prototyping of the algorithms, it typically leads to substantial loss of
computational performance as compared to solutions based on compiled languages. Hence,
the final versions of the algorithms are frequently re-coded in a compilable language. This
process, however, may involve quite substantial re-organization of the flow of execution, and
possible introduces unwanted errors. This paper presents an innovative approach to bringing
interpreted and compiled languages close together. Applications to simple random vibration
analysis demonstrate the applicability and potential of this new approach.

1 INTRODUCTION

In many engineering application there is an increasing demand on the availability of tools to
incorporate unavoidable random variability of loads and system properties into the workflow
of structural analysis. This requires a close relation between the data structures as required for
traditional Finite Element analyses and the stochastics tool required to obtain a suitable
statistical description of the relevant responses. This is readily achievable by using established
software development environments such as e.g. C++. Due to the required compilation
process and the possibly code optimization associated with it, the computational performance
can be quite impressive. On the other hand, the compile-link-cycles do not allow for quick
checks how minor algorithmic modifications or extensions affect the quality of the desired
results. This is particularly annoying when developing larger software projects in a distributed

C. Bucher and S. Wolff

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 11

work environment, since each compile-link must check for potential changes in dependent
modules which may lead to substantial delays.
It turns out that such algorithmic modifications or checking steps can be much faster
performed using an interpreted scripting language, albeit at some loss of algorithmic
performance. Typically this is not a real problem because test examples are usually chosen
small enough not run into performance problems. A fairly thorough discussion on the use of
scripting languages in computational science is given e.g. in (Langtangen 2008).
This paper focuses on the development of a C++ module library for structural, mathematical,
and statistical analysis including graphics named slangTNG which can be driven through a
scripting language as well. For performance reasons, the scripting language lua
(Ierusalimschy 2006) was chosen. Since the flow control of lua is not too far from the flow of
C++, it is fairly straightforward to convert pieces of lua-Code to C++-code carrying out the
same task. This is quite useful once the algorithm is fixed and computational performance
must be enhanced. The major advantages of lua can be summarized as follows:

− Very fast scripting language
− Popular for scripting of 3D games, recent developments of TEX and friends
− Lightweight basic interpreter code, compiles to a few kB
− Easily embeddable into final product, thus providing stand-alone solutions
− Flow structure close to C conventions (for, if, while, …)

However, there are of course also some things missing:

− lua contains only simple math functions (sin, cos, exp,...)
− Extensions for stochastic structural analysis needed

A previous software project in which the authors were involved (SLang - the Structural
Language) has been presented in (Bucher, Schorling, and Wall 1995). For a current
commercial software project (optiSLang 2012), the reliability analysis module was developed
exactly in this way, i.e. by implementing and testing the algorithms in slangTNG. During this
test phase, time-consuming compile-link-cycles could be eliminated thus sppeding up the
development process significantly. After finalizing the algorithms in script form, they were
subsequently transferred into fast-running C++.

2 CONNECTING COMPLIED AND SCRIPTED VERSIONS

Since compiled and scripted versions of an algorithm rely on substantially different
realizations in computer code, any scripting language requires some “glue”-code with
connects the data structures of the script interpreter to the data structures of the compiled
object library. Establishing and maintaining this glue code can be substantial effort,
particularly is parts of the class interfaces are changing during the development process. It is
therefore helpful to utilize an automatic binding process. For the software package slangTNG,
this binding of the C++ code to the scripting language lua is performed automatically using
swig (SWIG Documentation 2012). Several tests showed that the wrapper code generated is
fast and efficient for virtually all practical cases. A further advantage of swig is the fact that
bindings to other scripting languages such as python can be generated without additional
effort.

C. Bucher and S. Wolff

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 12

The general procedure can be summarized as follows:
− Define class methods in header file “class.hpp” as usual
− Prepare a SWIG input file “class.i” to define the headers to be scanned

(independent of scripting language)
− SWIG reads these header file and generates C++ glue code “wrap_class.cxx” for

all public methods (for specified scripting language)
− Wrapper code plus C++ implementation of class “class.cpp” are assembled in

library
− Library is loaded by the language interpreter
− In lua, classes can be accessed through lua tables

This is shown schematically in in Fig.1.

Figure 1: Generating wrapper code for the lua interpreter.

In order to access and use the C++ classes contained in this wrapped module library, the
following steps are required:

− From C++ code, allocate new lua interpreter in “main.cpp”
− Make class methods accessible to lua by calling “lua_openclass()”
− Use class in scripts “use_class.tng” passed to the newly created lua interpreter

This procedure is shown schematically in Fig.2.

Figure 2: Opening lua module for the interpreter.

In order to demonstrate the close relation between the C++ implementation and the lua script
version, consider the definition and simulation of a Gaussian random variable with a mean
value of 1 and a standard deviation of 0.5. The code snipped as shown in Fig.3 shows an
implementation of this process in C++. It can be seen that typical C++ features are utilized
such as the use of class constructors and class methods. Note that in the background, the
specific class RanvarNormal inherits from a more general class Ranvar. The C++ code
needs to be compiled and linked against all required libraries before it can be tested and
applied.

C. Bucher and S. Wolff

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 13

Figure 3: C++ code for simulation of a Gaussian random variable.

By binding this C++ code to the lua interpreter as outlined above, this process can be scripted
and run from the lua intepreter. The SWIG input file required for the wrapping process is
shown in Fig.4.

F
Figure 4: SWIG input file required to bind Ranvar class.

The lua code which is then usable from slangTNG is shown in Fig.5.

Figure 5: lua code (slangTNG) for simulation of a Gaussian random variable.

3 SIMULATION OF THE TRANSIENT RESPONSE OF A DUFFING
OSCILLATOR

The equation of motion of a Duffing oscillator is given by

(1)

C. Bucher and S. Wolff

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 14

Here x is the displacement, m denotes the mass, k the linear stiffness, ε is the nonlinearity
parameter and f(t) denotes the excitation process. In the following it is assumed, that the
excitation is a stationary random process with a given power spectral density:

(2)

The initial conditions for the oscillator are assumed to be quiescent, therefore the response
will exhibit a transient phase while asymptotically reaching stationarity. The excitation
process is simulated using the classical Rice formulation (see e.g. Bucher, 2009), and the
responses are computed using a fourth-order Runge-Kutta explicit integrator.

The slangTNG code carrying out the simulation is shown in Fig.6 and the code for the
reponse analysis is shown in Fig.7.

Figure 6: Sample code for Monte-Carlo simulation of a stationary random process with given power spectral
density function.

C. Bucher and S. Wolff

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 15

Figure 7: Sample code for carrying out Monte-Carlo simulation of a Duffing oscillator.

The results of the simulation based on 300 samples are shown in Fig.8. It can be seen that the
standard deviation approaches the stationary solution well within the time frame as analyzed.

C. Bucher and S. Wolff

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 16

Figure 8: Mean value and standard deviation of the transient stochastic response of a Duffing oscillator.

4 CONCLUDING REMARKS

The software project slangTNG demonstrates that it is fairly easy to establish and
maintain a stable connection between code written in a compiled language (C++) and an
interpreted language (lua). This enables fast development cycles regarding the implementation
of new or modified algorithms for stochastic structural analysis using scripting and yet allows
for a smooth transition to compiled versions of these algorithms.

The software is in the public domain (BSD-style license) and can be downloaded from
http://tng.tuxfamily.org. Ready-made binaries for Mac OSX and Windows are available from
the first author’s homepage at Vienna University of Technology
http://info.tuwien.ac.at/bucher/Private/slangTNG.html. An iOS version is available on the
Apple App Store.

Screenshots of the iOS version are given in Fig.9.

C. Bucher and S. Wolff

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 17

Figure 9: Screen shots of slangTNG on iOS.

5 ACKNOWLEDGMENT

The authors would like acknowledge financial support from the Austrian Science Funds
(FWF) as part of the Vienna Doctoral Programme on Water Resource Systems (DK-plus
W1219-N22).

REFERENCES

[1] Langtangen, H. P. (2008). Python Scripting for Computational Science. Springer.
[2] Bucher, C., Y. Schorling, and W. A. Wall (1995). “SLang–the Structural Language, a

tool for computational stochastic structural analysis”. In: Engineering Mechanics,
Proceedings of the 10th Conference. Ed. By S. Sture. ASCE, pp. 1123–1126.

[3] optiSLang. URL: http://www.dynardo.de/en/software/optislang.html (visited on
10/10/2012).

[4] Ierusalimschy, R. (2006). Programming in Lua. 2nd. Rio de Janeiro: lua.org.
[5] SWIG Documentation. URL: http://www.swig.org/Doc2.0/SWIGDocumentation.html (visited on

06/21/2012).
[6] Bucher, C. (2009). Computational analysis of randomness in structural mechanics. Ed.

By D. M. Frangopol. Structures and Infrastructures Book Series, Vol. 3. London: Taylor
& Francis.

