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Abstract. The paper considers a problem of stochastic corarml dynamics of a single-
degree-of-freedom system, subjected to combinedbdier and white noise external
excitations. To minimize the system response erselgpunded in magnitude control force is
applied to the systems. The stochastic optimal rebmiroblem is handled through the
dynamic programming approach. Based on the solutmrthe Hamilton-Jacobi-Bellman
equation it is proposed to use the dry frictionaasuboptimal control law. In the resonant
case the stochastic averaging procedure has beed @s derive stochastic fferential
equations for the system response amplitude andepiiane joint PDF of response amplitude
and phase is derived by finding an exact analytgmution to the corresponding Fokker-
Plank-Kolmogorov equation for the resonant casee Path Integration (Pl) method is used
to construct the joint response PDF for non-resdreases.

1 INTRODUCTION

There is a variety of engineering systems, wheeeettternal periodic excitation may be
combined with random loading, which may not be eegd. Since the system becomes
stochastic it requires stochastic control theoryesiablish the proper control strategy.
Dynamic Programming (DP) approachl provides sugtlanique, which enables to convert a
problem of optimal control to a problem of findinglion to the corresponding
multidimensional, in general nonlinear and degewerpartial diferential equation of
parabolic type for Bellman function — the Hamiltdaeobi-Bellman (HJB) equation. The HIB
equation must be satisfied within the entire stpees domain and the asymptotic behaviour
of the Bellman function is unknown. These two faciske it practically impossible to apply
any standard numerical technique to solve the HjiBuon.

Except the linear quadratic regulator (LQR) probl¢nere have been no exact analytical
solutions to a HIB equation for dynamic system&eR#y a new approach to problems with
bounded in magnitude control force has been prafide The method suggests handling the
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problem by splitting it into two steps. At the fissep an exact analytical solution to the HIB
equation is found in the outer domain. At the secstep the HIB equation is solved
numerically within the bounded state-space domahere the analytical solution is used as
boundary conditions, thereby finding a solutionhe HJB equation within the entire state
space. It has been proven mathematically2 thatotht@ained analytical solution indeed
describes the asymptotic behaviour of the Bellmanttion, hence it can be used as boundary
conditions.

Finding and applying the optimal control strategythe system makes it, in general,
nonlinear. Analysis of a nonlinear system subjedted¢ombined periodic and white noise
external excitations may be handled by the stochaseraging procedure5, 6. It is common
to use a standard transformation of variables tovelestochastic dierential equations with
respect to slowly varying amplitude and phase ef tidssponse. Another transformation of
variables was proposed in7, which was used Ifferdint authors. The method of multiple
scale along with closure technique were used tivelean analytical expression for the

response of the Dfing-Rayleigh oscillator subjected to combined pedoand random
external excitation8.

In the case of bounded in magnitude control, theadyic system possesses a special type
of nonlinearity — nonlinearity of signum type, thile transformation, proposed in9, cannot
be applied. Such a strong nonlinearity leads todiléa-function in the corresponding FPK
equation, written for the system displacement agldoity. It has been shown that a special
adaption of the Pl numerical method10 is requirectalculate the system response joint
probability density function (PDF) if the systemsgesses the signum type nonlinearity.

In the paper a problem of stochastic optimal cdnoba single-degree-of freedom
(SDOF) system is considered. A bounded in magnitxdernal control force is applied to the
system to minimize quadratic cost function, whistequal to the system response energy in
the special case. The DP approach is used to Huvproblem of stochastic optimal control.
To analyse the system the stochastic averagingeguoe is used. In the resonant case an
analytical solution to the corresponding FPK eduatis derived. Results of analytical
calculations are compared with the results of dineenerical simulation.

2 PROBLEM STATEMENT

Consider a dynamic system subjected to externdkewltise and periodic excitations. The
governing equation of motion in a state-space foray be written as:

Xy = Xz,
¥y = —20x; — OFx, + v + o (@) + Lsin(wi), D<txT, (1)
%4(0) = X144, X2 (0) = Xop, [V(D] = R, E[L ()T + £a)] = 6(La)

where 4 is the excitation amplitude2 is the excitation frequency aridt) is the zero-mean
Gaussian white noise. Assume that the aim of th@rabis to minimize the following
quadratic functional, which is equal to the systagan response energy whena=1orb =1:
. . . ™he 2 . z :
Jxgx0: () =E E [Q*x3 (M) + 23] + j: E[ﬂ‘x; (5) + x3(3)] a_?} (2)
Then, the Bellman function:

uley. xg. ) = infll; ...@x vl = R} (3)

must satisfy the following HIB equation:
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du . du du _
a Lu44i sm(mt]ﬂ—x: + infl=r {v ax=}+ g=0»0 4)
where:
du s L 0u  ag*d*u
Lu= x‘ﬂ_x,_ —(2axz +Q xl)ﬂ_x=+ Z o
, (5)
g[xix:x'-:} =

2(0°x2 4+ x32)

Introducing the inverse tim@& =T —t and evaluating the optimal control gives:

— _Re (ﬂ) [ a”}__Rﬂ (6)
v = sign o, JIN flgzr U ax, = ax.
The following Cauchy problem is formulated:
du _ du du
E:Lu +A£m[m[i'"—ﬂ]a—%—ﬂa—% + 4 @)

L -
u(xy. X2,0) = E(ﬂ‘xi +x3)

It can be seen that the equation (7) representmbnear, degenerate PDE of parabolic
type, which has to be satisfied within the wholatestspace domain. The solution to HIB
equation (7) provides an optimal control stratetgfined in (6).

3 SOLUTION TO THE HJB EQUATION

According to the proposed methodoléggssume that there is a domain of state-space

. du )
= sign
where g (BX: stays constant for all values ¢4.xz.7 = 0. Then, within this domain
the followingmodifiedHJB equation is valid:
du _ du du
3= Lu + Asin[w(T — T]]a—% Rza—x: +3 (7)

Let us use the quadratic function approach, prapeselief, to obtain the solution to the
modified HIB equation (7):

ulr, x,,x2) = Z fz‘_;u'(ﬂx:'x_;-' = foo (D) + f1o(@xy + Foo(Dxz + fz(Dxyx (8)

Lj=o
Substitution of (8) into (7) results in a set of EDfor coefficients/ii(f) = fi;. Solving
these equations, as presentédimvalid in the outer domain defined as:

A

-] —
bl = o ()

The inner domain, supplementary to the outer dorf®informs a strip of a finite width in
¥z direction and infinite inxx, direction. Within the outer domain the dry frigtio

v = Rsign(x.) provides the optimal control law. It can be seemf (9) that the width of the
inner domain will reduce with largerféierence between excitation and natural frequenkries.
the limiting case when thisfdérence is very large, the inner domain would redodbe axis
¥z and the dry friction law becomes optimal withiretkntire state-space. This result is
Meccanica dei Materiali e delle Strutture | 3 (2012), 3, PP. 29-36 31




D. Yurchenko, R. Iwankiewicz, P. Alevras

important since it excludes the necessity of sglvihe corresponding HJB equation.
Moreover, it resembles the case of pure extermalam excitation3. Thus for the large values
of detuning the influence of periodic excitationtémms of control strategy is negligible. In
this case the dry friction law may be consideredsalsoptimal. In the next section, this
preposition is directly verified by comparison witte results of numerical simulations.

4 DYNAMICS OF THE CONTROLLED SYSTEM

Application of the control forcer = Rsign(x) to the system leads to the following
nonlinear SDE:
1:1 = x:;
¥y = —2ax; — Fx, — Bsign(x,) + o (t) + Asin(wt), 0<t<T, (10)
X4(0) = x99, %2(0) = x4
To use the stochastic averaging procedure, thaedatdnransformation of variables is
applied:

x(t) = Alt) cos 8(2), 2(t) = —A(®)sin 6(2), 6(2) = wt + () (11)

where 4() and @) are the slowly varying amplitude and phase prasssspectively.

Differentiating (11) with respect to time, multiphg by cos & and sim& and assuming that
each term on the right hand sides of the resuléggations is proportional to a small
parameter, both equations can be averaged oveetia:

i 2R e A . g
aA—[—QA—E+m—Ecus¢]at—EaBl 12)
L[ A A . g
acp—[ E+m5]u¢]at_ﬁw,d,ﬂ5=

where B and B are uncorrelated Wiener processes with zero medrfes w* —Q°,

From the solution to the HJB equation in the nasemant case and from the discussion by
other authors it follows that the influence of thexipdic excitation in this case is small and
the process tends to be Markovian. Thus, for laajaes of detuning the external excitation

in (12) may be disregarded, assumihg= 0 . Then the equations (12) become uncoupled

and the steady-state me&Ri] = m. and mean square value of the amplitédd’] = D.
may be found from the solution to the correspondiRé equation or directly from (12):

. 4R g
= = 13
D,=0=2al, + Mg = — (13)

In the case oft = 0 the mean value of amplitude is found as:

o=
Ma = = (14)

The formula (14) is in a good agreement with theults of numerical simulations for
relatively high excitation frequencyw/Q > 2. It should be stressed that for numerical
simulation the values of R aridshould be taken proportional to a small paramaseit is
required by the stochastic averaging approach. Mewyethe results of the extensive
numerical simulations for other, not necessarilyabnvalues of R and. have shown the
similar behaviour in the vicinity of and far fromet resonance.
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In the resonant cadéd = 0) the stationary FPK equation may be written, reayireg the
derivatives, as:

B_AER o° 4 cr:dp+3
g\ " on T awra 20°°°?|P Tawrad) T ax

Equating each of the expressions under derivativeeto, integrating the first equation
with respect to A we obtain and substituting thipression into the second equation gives the
identity, where C is normalization constant. Thiigon may be simplified using the property
of logarithm, namely:

A
F,75no|p (15)

pld. @) = C'Aexp[é-‘ [— a_:' — A(A; + Az cos qb]]},
ﬂ_-}Mﬂ_Hﬂ_Aﬁﬂ_z (16)
9—5—51 1= =_E’¢ 1=

Consider the case i = 0, which may be of special interest, since in thasecthe

dynamic system has no means to dissipate the en¢ngy than due to the control force. In
4R

this case for stability in probability we obtain i 1 . It is interesting to note that in the

resonant case the purely deterministic systers 0) is unstable wher# = 0 . Calculating
the integration constant leads to expressionshiemtrobability density of the phase process
and the mean amplitude which are given by:

2(1 _Hl) (17)

Qo]

am =t
E[A]l = CL J; Afexpl—AS (A + A;cosd)ldAdd =

L]

plg) =

m,I(Z +%)

1
(1-2)
In the limiting case oft = 0,u— = formula (18) tends t&[4] =m. as expected. The
E[A]

results show that the ratign= is far from unity when the system is near its sitgb
boundary, i.en * 1|

(18)

5 RELIABILITY OF THE CONTROLLED SYSTEM

Here we study one possible way of the system’sifai- the first passage problem. It is
associated with the system’s response reachingitisal values, which leads to immediate
system failure. The first-passage problenay be formulated as a problem of finding a time
t: when the system overcomes its threshold valuettferfirst time. Since the excitation
process is random, we are interested in the melaie wé the timel = Elt.]. which can be
found as a solution to the corresponding Pontryagimationl. Equation (12) may be written
as:
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y 2B & A ar nﬂ’T_ 1
[‘“ “on Tzl (19)
with conditions T'(4) % o(A),A = 0and T(A.) = 0 (20)

As it can be seen, equation (19) contains the respphase. In the non-resonant case the
deterministic excitation will not significantly infmce the response, whereas in the resonant
case the influence of the deterministic excitatirsignificant. Moreover, the phase of the
deterministic system at the resonance may be equather zero ort. Thus, we consider the

resonant case and tal&e= T . It is possible to derive analytical solution the derivative of
the mean time by integrating equation (19) once:

, — A% + 24
I'G) = 3 e OO - 0O + |t - () 21)
where sy =it 22 (22)

V2éa ' wm 2w

and® — the error function. It is impossible to integraixpression (21) analytically; therefore
it has to be done numerically. The numerical irdegn has shown that the results
significantly depend on the values of noise intgnsit andk . Clearly, increase of noise
intensity decreases the mean first passage timteedytistem. Similar trend is observed when
h is decreasing, which is expected since this |daglsystem to its instability boundary.

6 PATH INTEGRATION FOR NON-RESONANT CASES

In the case away from resonance, the PI méftisdised to derive the joint response PDF
of system (10). This is a numerical iterative apgiobased on the Markovian nature of the
response, solving the Chapman-Kolmogorov equation:

vl v, t]=_[ _[ pl, vt vt y 't ddxdy (23)

where the prime denotes the previous time stepth/& point is worth separating this
numerical approach from other analytical path irdégn methods e.g., a Wiener path
integral technique. Starting from an initial density function and &ppg the transitional
probability density function to it the joint resm@EnPDF is acquired. This method has been
proved to be very efficient for constructing respefDFs of highly nonlinear and parametric
system$ 2 Figure 1 and Figure 2 depict the PDFs of the esy& response
for * =01,4=05 | two cases of damping and control force and séwsining values
including resonance. In both figures, it is notitedt larger detunind concentrates most of
the probability at lower amplitude values, as exggeven from classical dynamics theory.

As suggested by equations (14) and (18), the sdimet en amplitude stands for the control
force B too when comparing Fig. 1(a) and 2(c). Regarding ffhase process, in the
resonance case it tends to uniform distributiofas ® | as suggested by equation (17).
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Figure 2: PDFs for (a) the amplitude and (b) pHas®&=0.5 ancx=0.0 and different detuning values.

7 CONCLUSIONS

In this paper a problem of stochastic optimal agntf an SDOF system subjected to
combined deterministic and white noise externaltaions is considered. It has been shown
that in the non-resonant case the dry friction mtes the suboptimal control law and the
system response is not significantly influenced by tleterministic excitation. In the
resonance case the control strategy is significadiffgrent from the dry friction law. An
exact analytical solution of the corresponding FétfGation is derived in this special case. It
has been shown that unlike the purely determinstgtem, which is unstable when the dry
friction law is implemented, the system with thentmned excitation may be stable providing
that =1, The probability density function of the phase qass#() is not uniformly
distributed, but it tends to this distribution &g tvalue of dry friction cdéicient® tends to

infinity. The analytical result for a value of measponse amplitudé(®) is in a very good
agreement with the results of numerical simulations
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