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Abstract. The paper considers a problem of stochastic control and dynamics of a single-
degree-of-freedom system, subjected to combined periodic and white noise external 
excitations. To minimize the system response energy a bounded in magnitude control force is 
applied to the systems. The stochastic optimal control problem is handled through the 
dynamic programming approach. Based on the solution to the Hamilton-Jacobi-Bellman 
equation it is proposed to use the dry friction as a suboptimal control law. In the resonant 
case the stochastic averaging procedure has been used to derive stochastic differential 
equations for the system response amplitude and phase. The joint PDF of response amplitude 
and phase is derived by finding an exact analytical solution to the corresponding Fokker-
Plank-Kolmogorov equation for the resonant case. The Path Integration (PI) method is used 
to construct the joint response PDF for non-resonant cases. 

1 INTRODUCTION 

There is a variety of engineering systems, where the external periodic excitation may be 
combined with random loading, which may not be neglected. Since the system becomes 
stochastic it requires stochastic control theory to establish the proper control strategy. 
Dynamic Programming (DP) approach1 provides such a technique, which enables to convert a 
problem of optimal control to a problem of finding solution to the corresponding 
multidimensional, in general nonlinear and degenerate partial differential equation of 
parabolic type for Bellman function – the Hamilton-Jacobi-Bellman (HJB) equation. The HJB 
equation must be satisfied within the entire state-space domain and the asymptotic behaviour 
of the Bellman function is unknown. These two facts make it practically impossible to apply 
any standard numerical technique to solve the HJB equation. 

Except the linear quadratic regulator (LQR) problem, there have been no exact analytical 
solutions to a HJB equation for dynamic systems. Recently a new approach to problems with 
bounded in magnitude control force has been proposed2-4. The method suggests handling the 
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problem by splitting it into two steps. At the first step an exact analytical solution to the HJB 
equation is found in the outer domain. At the second step the HJB equation is solved 
numerically within the bounded state-space domain, where the analytical solution is used as 
boundary conditions, thereby finding a solution to the HJB equation within the entire state 
space. It has been proven mathematically2 that the obtained analytical solution indeed 
describes the asymptotic behaviour of the Bellman function, hence it can be used as boundary 
conditions. 

Finding and applying the optimal control strategy to the system makes it, in general, 
nonlinear. Analysis of a nonlinear system subjected to combined periodic and white noise 
external excitations may be handled by the stochastic averaging procedure5, 6. It is common 
to use a standard transformation of variables to derive stochastic differential equations with 
respect to slowly varying amplitude and phase of the response. Another transformation of 
variables was proposed in7, which was used by different authors. The method of multiple 
scale along with closure technique were used to derive an analytical expression for the 
response of the Duffing-Rayleigh oscillator subjected to combined periodic and random 
external excitation8. 

In the case of bounded in magnitude control, the dynamic system possesses a special type 
of nonlinearity – nonlinearity of signum type, thus the transformation, proposed in9, cannot 
be applied. Such a strong nonlinearity leads to the delta-function in the corresponding FPK 
equation, written for the system displacement and velocity. It has been shown that a special 
adaption of the PI numerical method10 is required to calculate the system response joint 
probability density function (PDF) if the system possesses the signum type nonlinearity. 

In the paper a problem of stochastic optimal control of a single-degree-of freedom 
(SDOF) system is considered. A bounded in magnitude external control force is applied to the 
system to minimize quadratic cost function, which is equal to the system response energy in 
the special case. The DP approach is used to solve the problem of stochastic optimal control. 
To analyse the system the stochastic averaging procedure is used. In the resonant case an 
analytical solution to the corresponding FPK equation is derived. Results of analytical 
calculations are compared with the results of direct numerical simulation. 

2 PROBLEM STATEMENT 

Consider a dynamic system subjected to external white noise and periodic excitations. The 
governing equation of motion in a state-space form may be written as: 

 

 
(1) 

where  is the excitation amplitude,  is the excitation frequency and  is the zero-mean 
Gaussian white noise. Assume that the aim of the control is to minimize the following 
quadratic functional, which is equal to the system mean response energy when a = 1 or b = 1: 

 

 
(2) 

Then, the Bellman function: 

  (3) 

must satisfy the following HJB equation: 
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(4) 

where: 

 

 

(5) 

Introducing the inverse time   and evaluating the optimal control gives: 

 
 

(6) 

The following Cauchy problem is formulated: 

 

 

(7) 

It can be seen that the equation (7) represents a nonlinear, degenerate PDE of parabolic 
type, which has to be satisfied within the whole state-space domain. The solution to HJB 
equation (7) provides an optimal control strategy, defined in (6). 

3 SOLUTION TO THE HJB EQUATION 

According to the proposed methodology4, assume that there is a domain of state-space 

where   stays constant for all values of   Then, within this domain 
the following modified HJB equation is valid: 

 
 

(7) 

Let us use the quadratic function approach, proposed earlier4, to obtain the solution to the 
modified HJB equation (7): 

 
(8) 

Substitution of (8) into (7) results in a set of ODEs for coefficients . Solving 
these equations, as presented in4, is valid in the outer domain defined as: 

 

 
(9) 

The inner domain, supplementary to the outer domain (9), forms a strip of a finite width in 
 direction and infinite in  direction. Within the outer domain the dry friction 

 provides the optimal control law. It can be seen from (9) that the width of the 
inner domain will reduce with larger difference between excitation and natural frequencies. In 
the limiting case when this difference is very large, the inner domain would reduce to the axis 

 and the dry friction law becomes optimal within the entire state-space. This result is 
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important since it excludes the necessity of solving the corresponding HJB equation. 
Moreover, it resembles the case of pure external random excitation3. Thus for the large values 
of detuning the influence of periodic excitation in terms of control strategy is negligible. In 
this case the dry friction law may be considered as suboptimal. In the next section, this 
preposition is directly verified by comparison with the results of numerical simulations. 

4 DYNAMICS OF THE CONTROLLED SYSTEM 

Application of the control force  to the system leads to the following 
nonlinear SDE: 

 

 
(10) 

To use the stochastic averaging procedure, the standard transformation of variables is 
applied: 

  (11) 

where  and  are the slowly varying amplitude and phase processes respectively. 
Differentiating (11) with respect to time, multiplying by and  and assuming that 
each term on the right hand sides of the resulting equations is proportional to a small 
parameter, both equations can be averaged over the period: 

 

 

(12) 

where B1 and B2 are uncorrelated Wiener processes with zero mean and  . 
From the solution to the HJB equation in the non-resonant case and from the discussion by 

other authors it follows that the influence of the periodic excitation in this case is small and 
the process tends to be Markovian. Thus, for large values of detuning the external excitation 
in (12) may be disregarded, assuming . Then the equations (12) become uncoupled 
and the steady-state mean  and mean square value of the amplitude  
may be found from the solution to the corresponding FPK equation or directly from (12): 

 
 

(13) 

In the case of  the mean value of amplitude is found as: 

 
 

(14) 

The formula (14) is in a good agreement with the results of numerical simulations for 
relatively high excitation frequency: ω/Ω > 2. It should be stressed that for numerical 
simulation the values of R and λ should be taken proportional to a small parameter as it is 
required by the stochastic averaging approach. However, the results of the extensive 
numerical simulations for other, not necessarily small, values of R and λ have shown the 
similar behaviour in the vicinity of and far from the resonance. 
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In the resonant case  the stationary FPK equation may be written, rearranging the 
derivatives, as: 

 
(15) 

Equating each of the expressions under derivative to zero, integrating the first equation 
with respect to A we obtain and substituting this expression into the second equation gives the 
identity, where C is normalization constant. The solution may be simplified using the property 
of logarithm, namely: 

 

 

(16) 

Consider the case of , which may be of special interest, since in this case the 
dynamic system has no means to dissipate the energy other than due to the control force. In 

this case for stability in probability we obtain . It is interesting to note that in the 
resonant case the purely deterministic system  is unstable when . Calculating 
the integration constant leads to expressions for the probability density of the phase process 
and the mean amplitude which are given by: 

 

 

(17) 

 

 

(18) 

In the limiting case of  formula (18) tends to  as expected. The 

results show that the ratio  is far from unity when the system is near its stability 
boundary, i.e. . 

5 RELIABILITY OF THE CONTROLLED SYSTEM 

Here we study one possible way of the system’s failure – the first passage problem. It is 
associated with the system’s response reaching its critical values, which leads to immediate 
system failure. The first-passage problem5 may be formulated as a problem of finding a time 

 when the system overcomes its threshold value for the first time. Since the excitation 
process is random, we are interested in the mean value of the time  which can be 
found as a solution to the corresponding Pontryagin equation5. Equation (12) may be written 
as: 
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(19) 

with conditions  (20) 

As it can be seen, equation (19) contains the response phase. In the non-resonant case the 
deterministic excitation will not significantly influence the response, whereas in the resonant 
case the influence of the deterministic excitation is significant. Moreover, the phase of the 
deterministic system at the resonance may be equal to either zero or π. Thus, we consider the 
resonant case and take . It is possible to derive analytical solution for the derivative of 
the mean time by integrating equation (19) once: 

 
(21) 

where 
 

(22) 

and  – the error function. It is impossible to integrate expression (21) analytically; therefore 
it has to be done numerically. The numerical integration has shown that the results 
significantly depend on the values of noise intensity  and . Clearly, increase of noise 
intensity decreases the mean first passage time of the system. Similar trend is observed when 
h is decreasing, which is expected since this leads the system to its instability boundary. 

6 PATH INTEGRATION FOR NON-RESONANT CASES 

In the case away from resonance, the PI method10 is used to derive the joint response PDF 
of system (10). This is a numerical iterative approach based on the Markovian nature of the 
response, solving the Chapman-Kolmogorov equation: 

 
 

(23) 

where the prime denotes the previous time step. At this point is worth separating this 
numerical approach from other analytical path integration methods e.g., a Wiener path 
integral technique11. Starting from an initial density function and applying the transitional 
probability density function to it the joint response PDF is acquired. This method has been 
proved to be very efficient for constructing response PDFs of highly nonlinear and parametric 
systems9, 12. Figure 1 and Figure 2 depict the PDFs of the system’s response 
for , two cases of damping and control force and several detuning values 
including resonance. In both figures, it is noticed that larger detuning concentrates most of 
the probability at lower amplitude values, as expected even from classical dynamics theory. 
As suggested by equations (14) and (18), the same effect on amplitude stands for the control 
force too when comparing Fig. 1(a) and 2(c). Regarding the phase process, in the 
resonance case it tends to uniform distribution as , as suggested by equation (17). 
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(a)          (b) 

Figure 1: PDFs for (a) the amplitude and (b) phase for R=0.1 and α=0.1 and different detuning values. 

 
(c)          (d) 

Figure 2: PDFs for (a) the amplitude and (b) phase for R=0.5 and α=0.0 and different detuning values. 
 

7 CONCLUSIONS 

In this paper a problem of stochastic optimal control of an SDOF system subjected to 
combined deterministic and white noise external excitations is considered. It has been shown 
that in the non-resonant case the dry friction provides the suboptimal control law and the 
system response is not significantly influenced by the deterministic excitation. In the 
resonance case the control strategy is significantly different from the dry friction law. An 
exact analytical solution of the corresponding FPK equation is derived in this special case. It 
has been shown that unlike the purely deterministic system, which is unstable when the dry 
friction law is implemented, the system with the combined excitation may be stable providing 
that . The probability density function of the phase process  is not uniformly 
distributed, but it tends to this distribution as the value of dry friction coefficient  tends to 
infinity. The analytical result for a value of mean response amplitude  is in a very good 
agreement with the results of numerical simulations.  
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