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Abstract. The paper deals with the analysis of linear and non-linear systems under a special 
class of symmetric α -stable stochastic processes, namely sub-Gaussian excitations. Such 
processes are defined multiplying the square root of an / 2α -stable random variable totally 
skewed to the right by a zero mean normal process with assigned autocorrelation function. 
Relying on the observation that the sub-Gaussian input may be viewed as a Gaussian process 
with random amplitude having / 2α -stable distribution, it is shown that the characteristic 
function and the probability density function of the response can be obtained from those of the 
system subject to the underlying Gaussian process by performing simple integrals. It is also 
observed that linear systems are amenable to closed-form solutions in terms of characteristic 
function of the response. Appropriate comparisons with the exact solutions and Monte Carlo 
simulation results demonstrate the accuracy of the procedure in the linear and non-linear 
cases, respectively. 

Sommario. Oggetto del presente lavoro è l’analisi di sistemi lineari e non-lineari soggetti a 
una particolare classe di processi aleatori simmetrici α -stabili, noti come processi sub-
Gaussiani. Tali processi sono definiti moltiplicando la radice quadrata di una variabile 
aleatoria / 2α -stabile totalmente deviata a destra per un processo aleatorio Gaussiano a 
media nulla di assegnata funzione di autocorrelazione. Osservando che una forzante sub-
Gaussiana può essere considerata come un processo Gaussiano caratterizzato da 
un’ampiezza aleatoria avente distribuzione / 2α -stabile, viene mostrato che la funzione 
caratteristica e la funzione densità di probabilità della risposta possono essere ottenute a 
partire da quelle del sistema soggetto al processo Gaussiano di base mediante il calcolo di 
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integrali semplici. Si osserva, inoltre, che per sistemi lineari la funzione caratteristica della 
risposta può essere determinata in forma chiusa. L’accuratezza della procedura è dimostrata 
mediante opportuni confronti con le soluzioni esatte nel caso lineare e con i risultati della 
simulazione Monte Carlo nel caso di sistemi non-lineari. 

1 INTRODUCTION 

The Central Limit Theorem (CLT) justifies the extensive use of Gaussian processes for 
modeling a wide class of physical phenomena. Well-established techniques for the analysis of 
linear and non-linear systems under Gaussian input may be found in classical textbooks on 
random vibration theory1-5. In this context, a central role is played by the Gaussian white 
noise process, formal derivative of the so-called Wiener process. Indeed, the special features 
of the Wiener process enable to perform the probabilistic characterization of the response to 
Gaussian white noise input by using the powerful tools of Itô stochastic differential calculus6. 
However, many real phenomena observed in physics, seismology, electrical engineering, 
economics, etc., are non-Gaussian in nature, as they belong to a heavy-tailed distribution class 
or have impulsive nature. The necessity of non-Gaussian models for describing the large 
fluctuations exhibited by such phenomena have raised an increasing interest in the so-called 
α -stable Lévy processes7. Such processes are characterized by four parameters: the stability 
index (0,2]α ∈ , the scale 0σ > , the skewness [ 1,1]β ∈ −  and the shift µ ∈� . An appropriate 
selection of the parameters α , σ , β  and µ  yields a rich variety of α -stable Lévy noises, 
which may be adequately used to model various phenomena such as income distributions in 
economics, seismic ground acceleration in earthquake engineering, gravitational forces acting 
on stars, etc. The Gaussian white noise is a special case of the α -stable Lévy white noise for 

2α = . The response of linear and non-linear systems driven by α -stable Lévy white noises 
has been widely investigated in the literature8-23 working either in terms of Probability 
Density Function (PDF), ruled by the Einstein-Smoluchowsky (ES) equation16,17, or of 
Characteristic Function (CF). Grigoriu11 obtained closed-form solutions for the CF and the 
mean up-crossing rate of the response of linear systems to α -stable processes based on the 
integral and series representation of the input process. Non-linear systems have been handled 
by different approaches such as digital simulation10,12,14, path integral method12, equivalent 
linearization technique17 and wavelet expansion23. Closed-form expressions of the PDF or CF 
can be found only in the stationary case for some scalar systems with polynomial 
nonlinearities18,19. 

This paper is devoted to the analysis of linear and non-linear systems under a special class 
of symmetric α -stable processes, namely sub-Gaussian excitations. Such processes are 
defined as the product of a zero mean Gaussian process ( )G t , having assigned autocorrelation 
function, and the square root of an / 2α -stable random variable ( 2α < ), A , totally skewed to 
the right ( 1β = ) and independent of ( )G t . The sub-Gaussian process 1/ 2 ( )A G t  is also called 
subordinate to the underlying Gaussian process ( )G t . In the linear case, closed-form 
solutions in terms of CF can be easily obtained by taking into account that the response 
process to the above defined input is sub-Gaussian too. The procedure presented in the paper 
relies on the observation that the subordinate input 1/ 2 ( )A G t  may be viewed as a conditional 
Gaussian process, namely as a Gaussian process with random amplitude having / 2α -stable 
distribution. Specifically, it is shown that the probabilistic characterization of the response of 
dynamic systems under sub-Gaussian input can be performed starting from the response 
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statistics of the system subject to the underlying Gaussian process. In this regard, it has to be 
mentioned that, while closed-form solutions are always available for the PDF and CF of the 
response of linear systems under Gaussian input, in the non-linear case the evaluation of 
response statistics is not an easy task. Nevertheless, if the underlying Gaussian process is a 
white noise, the PDF is known in explicit form for some special classes of non-linear 
systems5,26-28. In the other cases, approximate solutions of the partial differential equation 
ruling the PDF (Fokker-Planck-Kolmogorov equation) or the CF can be obtained by any of 
the procedures developed in the literature. 

Some numerical results concerning the response PDF and CF of one-dimensional linear 
and non-linear systems under α -stable sub-Gaussian input for various values of the stability 
index are presented in the paper. The accuracy of the proposed procedure is demonstrated 
through appropriate comparisons with the exact solution and Monte Carlo simulation (MCS) 
data in the linear and non-linear cases, respectively. 

2 αααα-STABLE RANDOM VARIABLES AND PROCESSES  

In this section, some basic concepts concerning α -stable random variables and processes 
are briefly summarized for clarity’s sake as well as for introducing appropriate notations. The 
readers interested in this topic are referred among others to Samorodnitsky and Taqqu7. 

A random variable X  is said to have a stable distribution if for any positive numbers m  
and n , there is a positive number p  and a number u∈�  such that: 

1 2

d

mX nX pX u+ = ++ = ++ = ++ = +  (1) 

where 1X  and 2X  are independent copies of X  and “
d

==== ” denotes equality in distribution. The 

characteristic function (CF) of such random variables, denoted as ( )Xφ ϑ , is given by: 

exp 1 i sign( ) tan i ,  if 1;
2

( ) [exp(i )]
2

exp 1 i sign( ) ln i ,  if 1
X E X

αα πασ ϑ β ϑ µϑ α
φ ϑ ϑ

σ ϑ β ϑ ϑ µϑ α
π

             − − + ≠− − + ≠− − + ≠− − + ≠                
                = == == == = 

         − + + =− + + =− + + =− + + =                 

 (2) 

where [ ]E �  means stochastic average; i 1= −  is the imaginary unit; (0,2]α ∈ , 0σ > , 
[ 1,1]β ∈ −  and µ ∈�  are four parameters commonly referred to as stability index (or 

characteristic exponent), scale parameter (or dispersion), skewness (or asymmetry) and shift 
(or location), respectively. The index of stability α  describes the tails of the probability 
density, the parameters σ  and β  govern, respectively, the spread and skewness of the 
distribution around its center which is defined by the shift µ  with respect to the origin. 
Random variables having a CF as in Eq. (2) are also called α -stable random variables and 
are denoted as ( , , )X Sα σ β µ� . In the case in which 0β µ= = , the random variable X  is 

symmetric and is denoted as X S Sα� . The probability densities of α -stable random 

variables exist and are continuous, but they are not always known in a simple explicit form. In 
fact, the Inverse Fourier Transform of the CF in Eq. (2) can be performed analytically only in 
few special cases: the Gaussian distribution 2( ,0, )X S σ µ� , the Cauchy distribution 
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1( ,0, )X S σ µ�  and the Lévy distribution 1/ 2( ,1, )X S σ µ� . Specifically, for normal random 

variables ( 2α = ) the scale parameter σ  is proportional to the standard deviation Xσ  

( 2Xσ σ= ), the skewness β  can be taken to be zero and µ  is the mean. 
The striking feature of α -stable random variables is that their Probability Density 

Function (PDF) has inverse power tails, which implies that the tails decay more slowly than 
those of Gaussian distributions. Specifically, the rate of decay depends on the characteristic 
exponent α , in such a way that the smaller α  heavier the tails. As a consequence, the 
variance and higher order statistical moments of α -stable random variables are infinite, with 
the exception of the case 2α =  (Gaussian distribution). In fact, for (0,2)α ∈ : 

,   for ;

,   for (0, ).

r

r

E X r

E X r

α

α

     = ∞ ≥= ∞ ≥= ∞ ≥= ∞ ≥    

     < ∞ ∈< ∞ ∈< ∞ ∈< ∞ ∈    

 (3) 

Of course, when 1α ≤  the mean is infinite as well.  
A random variable 1/2X A G=  is S Sα  ( 2α < ) if G  has a zero mean Gaussian distribution, 

2( ,0,0)G S σ� , and A  is an / 2α -stable random variable totally skewed to the right, 
2/

/ 2((cos( / 4)) ,1,0)A S α
α πα� , and independent of G . Such random variables are also called 

sub-Gaussian or subordinate to G  and have the following CF: 

/ 2
2 21

( ) [exp(i )] exp
2X GE X

α

φ ϑ ϑ ϑ σ
        = = −= = −= = −= = −    
        

 (4) 

where Gσ  denotes the standard deviation of G . It can be observed that each S Sα  random 

variable is conditionally Gaussian7, namely 1/2X A G=  may be viewed informally as normal 
with the random variance 2G Aσ . 

Similarly, a random vector n∈X �  is called sub-Gaussian S Sα  ( 2α < ) with underlying 

Gaussian vector G  or subordinate to G  if it is defined as: 
1/2AX = G  (5) 

being 2/
/ 2((cos( / 4)) ,1,0)A S α

α πα�  independent of G . The CF of the random vector X  

defined in Eq. (5) takes the following form: 

/ 2

T 2

1 1

1
( ) [exp(i )] exp

2

n n

j k jk
j k

E

α

φ ϑ ϑ σX X
= == == == =

        ϑ = ϑ = −ϑ = ϑ = −ϑ = ϑ = −ϑ = ϑ = −    
        

∑∑∑∑∑∑∑∑  (6) 

where 2 [ ]jk j kE G Gσ = . 

An α -stable stochastic process { }( ),  X t t T∈  may be defined as an α -stable random 

variable depending on the parameter set T . 
Let { }( ) ,  G t t T∈  be a zero mean Gaussian process and let A  be an / 2α -stable random 

variable 2/
/ 2((cos / 4) ,1,0)A S α

α πα� , ( 2α < ), independent of ( )G t , then 1/2( ) ( )X t A G t=  is 

a sub-Gaussian process whose CF is given by: 
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/ 2

T

1 1

1
( ; ) [exp(i )] exp ( , )

2

n n

j k G j k
j k

E R t t

α

φ ϑ ϑX t X
= == == == =

        ϑ = ϑ = −ϑ = ϑ = −ϑ = ϑ = −ϑ = ϑ = −    
        

∑∑∑∑∑∑∑∑  (7) 

where [ ]T
1 2( ), ( ), , ( )nX t X t X t=X K , [ ]T

1 2, , , nϑ ϑ ϑ= Kϑϑϑϑ , [ ]T
1 2, , , nt t t=t K  and 

( , ) [ ( ) ( )]G j k j kR t t E G t G t=  is the autocorrelation function of the underlying Gaussian process 

( )G t . 
In the next sections, the probabilistic characterization of the response of scalar systems 

subject to α -stable excitations will be addressed. In particular, an effective approach for 
evaluating the response PDF and CF in the special case of sub-Gaussian input will be 
presented. The extension to multi-degree-of-freedom (MDOF) systems is reported in the 
Appendix. 

3 αααα-STABLE LÉVY NOISE EXCITATION 

In analogy to the Gaussian white noise 0( )W t , given by the formal derivative of the Wiener 

process 0( )B t , an α -stable Lèvy white noise ( )LW t
α

 may be defined as 

d ( )
( )

dL

L t
W t

tα

α====  (8) 

where ( )L tα  denotes the corresponding α -stable Lèvy motion process. Zero-shift and zero-

skewness processes belonging to this class enjoy the following properties: i) start from zero, 
that is (0) 0Lα ==== , with probability one; ii) feature stationary and independent increments 

( ) ( )L t L sα α−−−− , t s> , having the α -stable distribution (((( ))))1/( ) ,0,0S t s α
α −−−− , so that the CF of 

the increment d ( )L tα  takes the form 

(((( ))))d ( ) exp dL t
α

αφ ϑ ϑ= −= −= −= − . (9) 

Notice that for 2α → , 0d ( ) 2d ( )L t B tα →→→→ , where 0d ( )B t  is the increment of the Wiener 

process. 
Let us now consider a first-order system excited by an α -stable Lèvy white noise 

0

( ) ( , ) ( );   0

(0)

LY t f Y t W t t

Y Y
α

& = + >= + >= + >= + >

====
 (10) 

where a dot over a variable denotes time derivative; ( , )f Y t  is an arbitrary function; and 0Y  is 

the initial condition, here assumed to be a zero mean random variable independent of the 
stochastic excitation ( )LW t

α
. 

The evolution of the response PDF, ( , )Yp y t , is ruled by the so-called Einstein-
Smoluchowsky (ES) equation15,16 

[[[[ ]]]]( , ) ( , )
( , ) ( , )Y Y

Y

p y t p y t
f y t p y t

t y y

α

α= −∂ ∂∂ ∂∂ ∂∂ ∂∂∂∂∂ ++++
∂ ∂∂ ∂∂ ∂∂ ∂ ∂∂∂∂

 (11) 
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where the symbol ( ) / y
αα

�∂ ∂∂ ∂∂ ∂∂ ∂  in the diffusion term denotes the Riesz-Weil fractional 

derivative24,25. 
For a well-behaved function ( , )Yp y t , the following relationship holds: 

( , )
( , )Y

Y

p y t
t

y

α
α

α ϑ φ ϑ
    ∂∂∂∂ = −= −= −= −    

∂∂∂∂        
F  (12) 

where [ ]�F  is the Fourier Transform operator and ( , )Y tφ ϑ  is the CF of the response, i.e. 
( , ) [ ( , )]Y Yt p y tφ ϑ ==== F . Taking into account Eq. (12), the Fourier Transform of the ES equation 

(11) yields the following equation for the response CF: 

i( , )
i ( , ) ( , )YY

Y

t
E f Y t e t

t
αϑφ ϑ = ϑ ϑ φ ϑ∂∂∂∂

     −−−−    ∂∂∂∂
 (13) 

which is often called spectral ES equation. 
As shown by Di Paola and Failla23, Eq. (13) can also be built by applying the rules of 

stochastic differential calculus, thus allowing a straightforward generalization to MDOF 
systems. Exact solutions of the spectral ES equation have been obtained for some scalar 
systems with polynomial nonlinearities, only in the stationary case18,19 ( ( , ) / 0Y t tφ ϑ =∂ ∂∂ ∂∂ ∂∂ ∂ ). 
Though much more tractable mathematically than the ES equation (11), Eq. (13), in general, 
should be solved numerically with high computational costs. Recently, an approximate 
solution procedure based on the joint use of wavelet representation and weighted residual 
method has been proposed23. 

4 αααα-STABLE SUB-GAUSSIAN EXCITATION 

Let us now assume that the scalar system (10) is subject to a special kind of symmetric α -
stable process, namely a sub-Gaussian excitation: 

1/2

0

( ) ( , ) ( );   0

(0)

Y t f Y t A G t t

Y Y

& = + >= + >= + >= + >
====

 (14) 

where, according to the notation introduced in Section 2, ( )G t  is a zero mean Gaussian 

process with assigned autocorrelation function ( , ) [ ( ) ( )]G j k j kR t t E G t G t= ; and A  denotes an 

/ 2α -stable random variable totally skewed to the right ( 2/
/ 2((cos / 4) ,1,0)A S α

α πα� ) and 

independent of ( )G t . 
The above problem is here tackled observing that Eq. (14) may be regarded as the equation 

of motion of a scalar system driven by a zero mean Gaussian process ( )G t  with random 

amplitude 1/2A . On the other hand, since the process 1/ 2 ( )A G t  is not ergodic, for each 
realization of the random variable A , say 0a >>>> , the input in Eq. (14) is Gaussian and takes 
the form 1/ 2 ( )a G t . Relying on the previous observations, the probabilistic characterization of 
the response process ( )Y t  under the sub-Gaussian input may be pursued through two 
successive steps. The first step consists in finding the statistical properties of the random 

process ̂ ( )Y t , ruled by the following first-order differential equation: 
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1/ 2

0

ˆ ˆ( ) ( , ) ( );   0,  0

ˆ ˆ(0)

Y t f Y t a G t t

Y Y

ρ= + > >= + > >= + > >= + > >

====

&

 (15) 

which is obtained from Eq. (14) replacing the random variable A  with its generic realization 
a . As will be outlined in detail next, for linear systems exact closed-form expressions of the 

PDF and the CF of ̂( )Y t  can be easily obtained by classical random vibration theory, while, in 
general, approximate procedures are required in the non-linear case. Furthermore, it is noted 
that such functions will depend on the parameter a , that is ˆ ( ; , )

Y
p y a t  and ˆ ( ; , )

Y
a tφ ϑ . 

The second step of the present procedure consists in the probabilistic characterization of 
the response process ( )Y t  under the sub-Gaussian input 1/ 2 ( )A G t  by using the statistics of the 

response ˆ( )Y t  to the Gaussian process 1/ 2 ( )a G t , defined in the previous step. For this 

purpose, it is observed that within the interval [ , d ]a a a+  the input 1/ 2 ( )a G t  and the 

associated response process ˆ( )Y t  occur ( )dAp a a times, being ( )Ap a  the PDF of the random 
variable A . It follows that the PDF and the CF of ( )Y t  may be obtained simply by 

performing ensemble average of ˆ ( ; , )
Y

p y A t  and ˆ ( ; , )
Y

A tφ ϑ  over the whole set of realizations 

of A , once the parameter a  has been duly replaced by the / 2α -stable random variable A , 
that is: 

ˆ ˆ

0

ˆ ˆ

0

( ; ) [ ( ; , )] ( ) ( ; , )d ;

( ; ) [ ( ; , )] ( ) ( ; , )d .

Y AY Y

Y AY Y

p y t E p y A t p a p y a t a

t E A t p a a t aφ ϑ φ ϑ φ ϑ

∞

∞

= =

= =

∫

∫

 (16a,b) 

In a similar way, the joint PDF and CF at two different time instants 1t  and 2t , can be 
computed as: 

1 2 1 2 1 2

1 2 1 2 1 2

ˆ ˆ ˆ ˆ1 2 1 2 1 2 1 2 1 2 1 2

0

ˆ ˆ ˆ ˆ1 2 1 2 1 2 1 2 1 2 1 2

0

( , ; , ) [ ( , ; , , )] ( ) ( , ; , , )d ;

( , ; , ) [ ( , ; , , )] ( ) ( , ; , , )d .

Y Y AY Y Y Y

Y Y AY Y Y Y

p y y t t E p y y A t t p a p y y a t t a

t t E A t t p a a t t aφ ϑ ϑ φ ϑ ϑ φ ϑ ϑ

∞

∞

= =

= =

∫

∫

 (17a,b) 

As regards the second step of the above described procedure, it is worth noting that the 
evaluation of the integrals in Eq. (16) (or Eq. (17)) may be quite involved. In fact, the PDF of 
the / 2α -stable random variable A , ( )Ap a , which is obtained making the Inverse Fourier 

Transform of the CF ( )Aφ ϑ  (Eq. (2) where 2/(cos( / 4)) ασ πα==== , 1β ====  and 0µ ==== ), does not 

take a simple analytical form for any value of α . Since ( ; )Yp y t  and ( ; )Y tφ ϑ  are the 

stochastic averages of ̂ ( ; , )
Y

p y A t  and ˆ ( ; , )
Y

A tφ ϑ , respectively, an efficient way to avoid the 

evaluation of the integrals in Eq. (16) consists in simulating a large number of samples14 of 
A , say N , and then applying the following relationships, according to Monte Carlo 
simulation (MCS) method: 
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( )
ˆ ˆ

1

( )
ˆ ˆ

1

1
( ; ) [ ( ; , )] ( ; , );

1
( ; ) [ ( ; , )] ( ; , )

N
j

Y Y Y
j

N
j

Y Y Y
j

p y t E p y A t p y a t
N

t E A t a t
N

φ ϑ φ ϑ φ ϑ

=

=

= ≅

= ≅

∑

∑
 (18a,b) 

being ( )ja  the thj −−−−  realization of A . Obviously, an analogous procedure may be followed 
to obtain the joint PDF and CF given in Eq. (17). 

It is noted that the presented procedure allows to reduce the analysis of a system under sub-
Gaussian input to the one of the same system subject to the underlying Gaussian process. In 
this respect, the probabilistic characterization of the response to α -stable Lèvy white noise, 
discussed in Section 3, turns out to be much more difficult since it requires the solution of the 
ES equation or of its spectral counterpart. 

In the sequel, the application of the proposed approach will be described in detail 
considering separately linear and non-linear systems. 

4.1 First-order linear systems under sub-Gaussian input 

The simple case of a linear half oscillator under sub-Gaussian input is first treated:  

1/ 2

0

( ) ( ) ( );   0,  0

(0) .

Y t Y t A G t t

Y Y

ρ ρ& = − + > >= − + > >= − + > >= − + > >
====

 (19) 

The statistics of the response process ( )Y t  may be easily evaluated taking into account 
that, since the equation of motion (19) is linear, the following relationship holds: 

1/2( ) ( )Y t A Y t= %  (20) 

where ( )Y t%  denotes the response of the linear system subject to the underlying Gaussian input 

( )G t , say for 1a =  ( ( ) ( ) ( )Y t Y t G tρ&% %= − += − += − += − + ). If the initial condition 0Y%  is supposed to be a zero 

mean Gaussian random variable, then ( )Y t%  is a zero mean normal random process. Therefore, 

it clearly appears that the response ( )Y t  defined in Eq. (20) is sub-Gaussian S Sα  with 

underlying Gaussian process ( )Y t% . According to Eqs. (4) and (7), the unconditional and joint 
CFs of ( )Y t  are given, respectively, by: 

/ 2
2 21

( ; ) exp ( ) ;
2Y Y

t t
α

φ ϑ ϑ σ %

        = −= −= −= −    
        

 (21) 

1 2

/ 2
Τ

1 2 1 2 1 2

1
( , ; , ) exp ( , ) .

2Y Y Y
t t t t

α

φ ϑ ϑ R %

        = − ϑ ϑ= − ϑ ϑ= − ϑ ϑ= − ϑ ϑ    
        

 (22) 

Alternatively, the same result may be obtained by applying the proposed procedure. For 

this purpose, first the statistical properties of the response process ˆ( )Y t  to the Gaussian 

excitation 1/ 2 ( )a G t  (Eq. (15)) have to be evaluated. For simplicity’s sake, the initial condition 

0̂Y  is supposed to be a zero mean Gaussian random variable, so that the response ˆ( )Y t  is a 

zero mean Gaussian process, whose complete probabilistic characterization is ensured by the 
knowledge of the autocorrelation function ̂( , )j kY

R t t . In view of the linearity of the system, 
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ˆ ( , )j kY
R t t  may be simply obtained by first evaluating the autocorrelation function ( , )j kY

R t t%  of 

the response process ( )Y t%  to the underlying Gaussian input ( )G t , say for 1a = , and then 
applying the following relationship: 

ˆ ( , ) ( , ).j k j kYY
R t t aR t t= %  (23) 

The procedure for deriving the autocorrelation function of the random process ( )Y t%  can be 
found in classical textbooks on random vibration theory2. 

According to Eq. (23), once the autocorrelation function ( , )j kY
R t t%  is known, the 

unconditional PDF and CF of the Gaussian process ˆ( )Y t  can be obtained, respectively, as 
follows: 

2

ˆ 21/2

2 2
ˆ

1
( ; , ) exp ;

2 ( )2 ( )

1
( ; , ) exp ( ) ,

2

Y
YY

YY

y
p y a t

a ta t

a t a t

σπ σ

φ ϑ ϑ σ

 
= −  

 

 = − 
 

%%

%

 (24a,b) 

being 2 2
ˆ ( ) ( )

YY
t a tσ σ= %  and 2( ) ( , )

Y Y
t R t tσ =% % . Second-order statistics may be evaluated in terms 

of joint PDF or CF at two different time instants 1t  and 2t  given, respectively, by: 

( )( )1 2

1 2

1
T 1

ˆ ˆ 1 2 1 2 1 21/2

1 2

T
ˆ ˆ 1 2 1 2 1 2

1
( , ; , , ) exp ( , ) ;

22 Det ( , )

( , ; , , ) exp ( , ) ,
2

Y Y

Y Y

a
p y y a t t t t

a t t

a
a t t t t

π

φ ϑ ϑ

−
− 

= − 
 

 = − 
 

Y

Y

Y

y R y
R

R

%

%

%ϑ ϑϑ ϑϑ ϑϑ ϑ

 (25a,b) 

where ˆ ˆ( )i iY Y t= , ( )i iy y t= , ( 1,2)i = , [ ]T
1 2,y y=y  and [ ]T

1 2,ϑ ϑ=ϑϑϑϑ . In Eq. (25), 1 2( , )t tYR %  

denotes the autocorrelation matrix of T
1 2,Y Y =  Y% % % , ( ( )i iY Y t=% % , 1,2i = ), given by: 

2
1 1 2T

1 2 2
2 1 2

( ) ( , )
( , ) [ ] .

( , ) ( )

t R t t
t t E

R t t t

σ
σ

 
= =  

 

Y Y
Y

Y Y

R YY % %

%

% %

% %  (26) 

Notice that both the PDF and the CF of ˆ( )Y t  may be regarded as functions of a random 
parameter since they depend on the generic realization of the random variable A . 

Then, following the proposed approach, the unconditional (or joint) PDF and CF of ( )Y t  
may be obtained simply by evaluating the integrals in Eq. (16) (or Eq. (17)).  

Summarizing, the presented procedure for the probabilistic characterization of the response 
of a linear system driven by a sub-Gaussian process 1/ 2 ( )A G t  requires: 

i) to compute the autocorrelation function ̂( , )j kY
R t t  of the response ̂ ( )Y t  to the 

Gaussian process 1/ 2 ( )a G t  through Eq. (23); 
ii)  to evaluate the unconditional (or joint) PDF and CF of the Gaussian response 

process ̂ ( )Y t  by means of Eq. (24) (or Eq. (25)); 
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iii)  to perform ensemble average of ˆ ( ; , )
Y

p y A t  and ˆ ( ; , )
Y

A tφ ϑ  (or 
1 2
ˆ ˆ 1 2 1 2( , ; , , )
Y Y

p y y A t t  

and 
1 2
ˆ ˆ 1 2 1 2( , ; , , )

Y Y
A t tφ ϑ ϑ ) according to Eq. (16) (or Eq. (17)).  

4.2 First-order non-linear systems under sub-Gaussian input  

Let us now consider the general case in which ( , )f Y t  in Eq. (14) is an arbitrary non-linear 
function. 

Since the system is non-linear, Eq. (20) does not apply and, in general, closed-form 
solutions in terms of PDF or CF cannot be derived. The proposed approach first requires to 

evaluate the statistics of the random process ˆ( )Y t  ruled by Eq. (15). However, due to the 

nonlinearity of the system, the response ˆ( )Y t  to the zero mean Gaussian process 1/ 2 ( )a G t  is 
non-Gaussian and the evaluation of its exact PDF or CF is a very hard task. Nevertheless, in 
the case in which ( )G t  is a normal white noise, analytical expressions of the response PDF 
are available for some special classes of non-linear systems5,26-28. Once the exact or 

approximate PDF and CF of ̂( )Y t  are known, the probabilistic characterization of the 
response process ( )Y t  under the sub-Gaussian input can be still performed by applying Eqs. 

(16) and (17). Indeed, such equations are not related to the Gaussianity of the process ˆ( )Y t  
since they stem from the interpretation of the sub-Gaussian input as a conditional Gaussian 
process.  

In order to clarify the concepts stated above, let us assume that the underlying Gaussian 
process ( )G t  is a zero mean normal white noise, i.e. 0( ) ( )G t W t≡≡≡≡ , fully characterized by the 

autocorrelation function: 

0 1 2 0 1 0 2 1 2( , ) [ ( ) ( )] ( )WR t t E W t W t q t tδ= = −= = −= = −= = −  (27) 

where ( )δ �  denotes the Dirac’s delta function and 02q Sπ= , being 0S  the Power Spectral 

Density (PSD) of 0( )W t . In this case, the input in Eq. (14), 1/ 2 1/ 2
0( ) ( )A G t A W t≡ , will be 

termed sub-Gaussian white noise or subordinate α -stable white noise and is here denoted as 
( )W tα . It is recalled that the white noise 0( )W t  is the formal derivative of the Wiener process 

0( )B t , that is 0 0( ) d ( ) / dW t B t t====  ( 0[ ( )] 0E B t = ; 2
0[ ( )] dE B t q t= ). Similarly, the sub-Gaussian 

white noise ( )W tα  may be defined as the formal derivative of the sub-Gaussian Wiener 

process, 1/ 2
0( ) ( )B t A B tα ==== . The process ( )B tα  enjoys some important properties:  

i) it has independent stationary increments (( ) ( )B t B sα α−−−− , t s> ) following the α -

stable distribution, that is ( ) ( )B t B sα α �−−−− 1/ 2((( ) / 2) ,0,0)S t sα − , 0t > ; 

ii)  the CF of an increment of the sub-Gaussian Wiener process, 1/ 2
0d ( ) d ( )B t A B tα ==== , 

takes the form: 

( )/ 2
d ( )( ) exp (d / 2) ;B t t

α

ααφ ϑ ϑ= −  (28) 

iii)  for 2α → , 0d ( ) d ( )B t B tα → , so that the Wiener process may be viewed as a 

particular case of the process ( )B tα . 

By virtue of property i), the main tools of the Itô stochastic differential calculus can be 
used for analyzing the response of non-linear systems driven by sub-Gaussian white noises. In 
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particular, since the increments of the subordinate Wiener process ( )B tα  are independent, one 

may take full advantage of the non-anticipating property.  
A comparison may be reasonably made between the sub-Gaussian white noise ( )W tα  and 

the Lévy white noise ( )LW t
α

 (see Section 2) as both processes are α -stable. Specifically, it 

can be observed that property i) is fulfilled for both the increments 1/ 2
0d ( ) d ( )B t A B tα ====  and 

d ( ) ( )dLL t W t tα α
==== , whereas the CFs d ( )( )B tα

φ ϑ  (Eq. (28)) and d ( )( )L tα
φ ϑ  (Eq. (9)), are quite 

different. By comparing Eqs. (28) and (9), it can be inferred that the processes ( )W tα  and 

( )LW t
α

 have different scales. 

Once the basic features of the input process 1/ 2
0( ) ( )W t A W tα =  have been outlined, Eq. (14) 

(where 0( ) ( )G t W t≡≡≡≡ ) may be converted into the standard Itô form as follows: 

1/ 2
0d ( ) ( , )d d ( ).Y t f Y t t A B t= += += += +  (29) 

Then, replacing the random variable A  with its generic realization a , the Itô type equation 
for the response process ˆ( )Y t  to the input 1/ 2

0( )a W t  is obtained 

1/ 2
0

ˆ ˆd ( ) ( , )d d ( ).Y t f Y t t a B t= += += += +  (30) 

Notice that in Eq. (29) the input is represented by an increment of the sub-Gaussian Wiener 
process 1/ 2

0d ( ) d ( )B t A B tα ==== , while in Eq. (30) the system is subject to an increment of the 

Wiener process 0d ( )B t  multiplied by the square root of the generic realization of the random 

variable A . As already mentioned, the first step of the proposed procedure consists in 

evaluating the statistics of ̂( )Y t . Such process is a Markov one whose unconditional PDF 

ˆ ( ; , )
Y

p y a t  is ruled by the well-known Fokker-Planck-Kolmogorov (FPK) equation: 

(((( ))))
2

ˆ ˆ
ˆ 2

( ; , ) ( ; , )1
( , ) ( ; , ) .

2
Y Y

Y

p y a t p y a t
f y t p y a t aq

t y y

∂ ∂∂ ∂∂ ∂∂ ∂∂∂∂∂= − += − += − += − +
∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂

 (31) 

Alternatively, ˆ( )Y t  may be characterized evaluating the CF, ˆ ( ; , )
Y

a tφ ϑ , as solution of the 

following partial differential equation: 

ˆ 2
ˆ

( ; , ) 1ˆ ˆi [ ( , )exp(i )] ( ; , )
2

Y
Y

a t
E f Y t Y aq a t

t

φ ϑ
ϑ ϑ ϑ φ ϑ

∂
= −

∂
 (32) 

which can be obtained simply by making the Fourier Transform of the FPK equation (31). If 

ˆ( , )f Y t  is given by a polynomial of the type 
1

ˆ ˆ( , ) ( )
m

k
k

k

f Y t c Y t
=

=∑ , taking into account the 

well-known relationship: 

ˆ ( ; , )ˆ ˆ[ exp(i )] ( i) ,
k

k k Y
k

a t
E Y Y

φ ϑ
ϑ

ϑ
∂

= −
∂

 (33) 

the equation ruling the CF takes the form: 

ˆ ˆ 2
ˆ

1

( ; , ) ( ; , ) 1
i ( i) ( ; , ).

2

km
kY Y

k k Y
k

a t a t
c aq a t

t

φ ϑ φ ϑ
ϑ ϑ φ ϑ

ϑ=

∂ ∂
= − −

∂ ∂∑  (34) 
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Both Eqs. (31) and (32) (or (34)) should be supplemented by the appropriate boundary and 
initial conditions. 

Unfortunately, the analytical solution of the previous partial differential equations presents 
severe difficulties, so that several approximate techniques have been developed in the 
literature. Nevertheless, closed-form stationary solutions of the FPK equation (31) can be 
obtained for some special non-linear systems belonging to the class of generalized stationary 
potential5,26-28. For such systems the proposed approach still represents an accurate and 
efficient tool since the stationary PDF of the response under sub-Gaussian input can be easily 
obtained by means of Eq. (16a), once the exact stationary PDF of the response to the 
underlying Gaussian process multiplied by 1/ 2a  is known. 

5 NUMERICAL APPLICATIONS 

5.1 Stationary response of a linear half oscillator under sub-Gaussian input  

As first example let us consider the one-dimensional linear system under sub-Gaussian 
input ruled by Eq. (19), here rewritten for clarity’s sake: 

1/2( ) ( ) ( );  0.Y t Y t A G tρ ρ= − + >= − + >= − + >= − + >&  (35) 

Let ( )G t  be a zero mean stationary Gaussian process fully characterized by the following 

autocorrelation function, ( )GR τ : 

(((( ))))2( ) exp ;  0.G GR τ σ ν τ ν= − >= − >= − >= − >  (36) 

If the motion starts at t = −∞= −∞= −∞= −∞ , then the response process ( )Y t  is stationary too. Furthermore, 

as outlined in Section 4.1, ( )Y t  is an α -stable sub-Gaussian process whose CF, ( )Yφ ϑ , can 

be determined analytically through Eq. (21), once the autocorrelation function, ( )
Y

R τ% , of the 

response ( )Y t%  to the underlying Gaussian process ( )G t  is known. The random process ( )Y t% , 

solution of the differential equation ( ) ( ) ( )Y t Y t G tρ= − += − += − += − +&% % , is a zero mean stationary Gaussian 

one whose autocorrelation function ( )
Y

R τ%  takes the following form: 

( ) [ ]{ }
2

2 2
( ) cosh( ) cosh( ) sgn( ) sinh( ) sinh( ) .G

Y
R

στ ρ ντ ν ρτ τ ν ρτ ρ ντ
ρ ρ ν

= − + −
−

%  (37) 

Then, the exact CF of the stationary response ( )Y t , ( )Yφ ϑ , is obtained from Eq. (21) setting 
2 2( )
Y Y

tσ σ====% % , where 2 2(0) / ( )GY Y
Rσ = ρ ρ νσ% %= += += += + . The exact stationary PDF, ( )Yp y , may be 

evaluated making the Inverse Fourier Transform of the CF ( )Yφ ϑ . Similarly, second-order 

statistics can be deduced in terms of the exact joint CF 
1 2 1 2( , ; )Y Yφ ϑ ϑ τ  by means of Eq. (22). 

In order to apply the procedure presented in the paper, first the statistics of ̂( )Y t , response 

to the Gaussian input 1/ 2 ( )a G t , need to be calculated by using Eqs. (24) and (25). For this 

purpose, the autocorrelation function ˆ ( )
Y

R τ  can be evaluated substituting ( )
Y

R τ%  as given in 

Eq. (37) into Eq. (23). Then, the unconditional and joint PDF and CF of the response ( )Y t  to 
the sub-Gaussian input can be obtained performing ensemble averages according to Eqs. (16) 
and (17). 
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The analysis has been carried out for different values of the stability index α , selecting the 
parameters in Eqs. (35) and (36) as follows: 0.6ρ ==== , 2  1Gσ ====  and 0.8ν ==== . In Fig. 1, the 

stationary CF of ( )Y t , ( )Yφ ϑ , evaluated by means of the proposed approach is compared with 

the exact one (Eq. (21)). An analogous comparison in terms of stationary PDF, ( )Yp y , is 
shown in Fig. 2, where the exact solution is now derived making the Inverse Fourier 
Transform of the CF (21). The stochastic averages in Eq. (16) have been computed both 
evaluating numerically the integrals and by MCS, namely generating 10000N ====  samples of 
the random variable A  and then applying Eq. (18). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Stationary CF of the response of the linear half oscillator in Eq. (35) for different values of α : exact 
solution (Eq. (21)) coincident with the proposed one (Eq. (16b)), (continuous line); proposed solution computed 
by MCS (Eq. (18b)), (dashed line); classical MCS (symbols). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Stationary PDF of the response of the linear half oscillator in Eq. (35) for different values of α : exact 
solution (Inverse Fourier Transform of Eq. (21)) coincident with the proposed one (Eq. (16a)), (continuous line); 
proposed solution computed by MCS (Eq. (18a)), (dashed line); classical MCS (symbols). 
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As shown in Figs. 1 and 2, the results obtained through the numerical evaluation of the 
integrals in Eq. (16) obviously coincide with the exact solutions, but to retrieve the PDF ( )Ap a  

as Inverse Fourier Transform of the characteristic function ( )Aφ ϑ  has not been an easy task due 
to the heavy tailed distribution of the / 2α -stable random variable A . Conversely, the 
application of digital simulation according to Eq. (18) is more straightforward and robust. At 
last, in Figs. 1 and 2 the results deduced by applying brute classical MCS to Eq. (35) are also 
plotted. Notice that the proposed procedure yields accurate estimates in terms of both PDF 
and CF of the response even for small values of the characteristic exponent α . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Stationary joint CF of the response of the linear half oscillator in Eq. (35) for different values of 2ϑ , (a) 

0.1 sτ ====  and (b) 0.5 sτ ==== : exact solution (Eq. (22)) coincident with the proposed one (Eq. (17b)), (continuous 
line); proposed solution computed by MCS (dashed line); classical MCS (symbols). 

Figure 3 displays the stationary joint CF of ( )Y t , 
1 2 1 2( , ; )Y Yφ ϑ ϑ τ , for various values of 2ϑ . 

The stability index α  is set equal to 0.3 and two different choices of 2 1t tτ = −= −= −= − , say 0.1 sτ =  
and 0.5 sτ = , are considered. The exact solution given by Eq. (22) is compared with the 
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proposed one (Eq. (17b)) as well as with the results provided by classical MCS. Specifically, 
the stochastic average in Eq. (17b) has been computed both solving numerically the integral 
and by MCS (with 10000N ====  samples) following the procedure outlined above for the 
unconditional PDF and CF. It can be observed that the results obtained by the present 
approach are in good agreement with the exact solution and classical MCS data. In particular, 
when the integral in Eq. (17b) is computed numerically, by preliminarily evaluating the PDF 
of the random variable A , as expected, the proposed solution coincides with the exact one. 
Further numerical investigations, here omitted for conciseness, have demonstrated that 
varying the stability index α  in the range (0,2], Eq. (17b) still provides accurate estimates of 
the joint CF of ( )Y t . 

The results discussed above state that the probabilistic characterization of the response of 
linear systems under sub-Gaussian input may be pursued following four different ways: 1) 
exact solution (Eqs. (21), (22) and corresponding Inverse Fourier Transforms to obtain the 
unconditional and joint PDF, respectively); 2) proposed method based on the numerical 
evaluation of the integrals in Eqs. (16) and (17); 3) proposed approach associated with MCS 
(see Eq. (18)); 4) classical MCS. 

5.2 Stationary response of a non-linear half oscillator driven by a sub-Gaussian white 
noise  

The second example concerns the probabilistic characterization of the response of the 
following non-linear system: 

3 1/ 2
0( ) ( ) ( ) ( );  0, 0Y t Y t ηY t A W t ηρ ρ= − − + > >= − − + > >= − − + > >= − − + > >&  (38) 

where 0( )W t  is a zero mean stationary Gaussian white noise with autocorrelation function 

0 0 0( ) [ ( ) ( )] ( )WR E W t W t qτ τ δ τ= + == + == + == + = . As pointed out in Section 4.2, since the system is non-

linear, Eq. (20) does not apply, whereas the relationships in Eqs. (16) and (17) still hold. Let 
us then consider the non-linear half oscillator in Eq. (38) subject to the Gaussian input 

1/2
0( )a W t : 

3 1/ 2
0

ˆ ˆ ˆ( ) ( ) ( ) ( )Y t Y t ηY t a W tρ& = − − += − − += − − += − − +  (39) 

being 0a >>>>  the generic realization of the random variable A . The above system belongs to 
the class of generalized stationary potential5. In particular, the stationary PDF of the non-

Gaussian response process ˆ( )Y t  is known to be: 

2 4

ˆ

2
( ; ) ( )exp

2 4Y

y y
p y a C a

aq
ρ η

        
= − += − += − += − +        

        
 (40) 

where ( )C a  is a function of the parameter a  such that ˆ ( ; )
Y

p y a  satisfies the normalization 

condition. Then, as stated by Eq. (16a), the stationary PDF of the response ( )Y t  to the sub-

Gaussian white noise, ( )Yp y , can be obtained performing ensemble average of ˆ ( ; )
Y

p y A . 

Figure 4 shows the stationary response PDF, ( )Yp y , evaluated for different values of the 
stability index α  and the following selection of the parameters: 0.5ρ ==== , 0.3η ====  and 1q ==== . 
The results obtained by applying the proposed procedure are contrasted with those provided 
by classical MCS. As in the previous example, the stochastic average, defining the stationary 
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PDF ( )Yp y  of the response, has been computed both evaluating numerically the integral in 
Eq. (16a) and by MCS generating 10000N ====  samples of the random variable A  (Eq. (18a)). 
Notice that also in the non-linear case the proposed procedure yields very accurate estimates 
of the response statistics for different values of the characteristic exponent α . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: Stationary PDF of the response of the non-linear half oscillator in Eq. (38) for different values of α : 
proposed solution (Eq. (16a)), (continuous line); proposed solution computed by MCS (Eq. (18a)), (dashed line); 
classical MCS (symbols). 

It has to be emphasized that classical MCS is much more onerous than the present 
procedure even in the case in which the stochastic averages in Eqs. (16) and (17) are 
computed resorting to digital simulation. In fact, the application of classical MCS involves the 
following steps: i) simulate a sample, ( )ja , of the random variable 

2/
/ 2((cos( / 4)) ,1,0)A S α

α πα� ; ii) generate a sample, ( )
0 ( )jW t , of the stationary white noise 

0( )W t , for instance by means of the wave superposition-based technique proposed by 

Shinozuka29; iii) multiply ( )ja  by ( )
0 ( )jW t  to obtain the j -th sample, ( ) ( )

0 ( )j ja W t , of the sub-

Gaussian white noise; iv) evaluate the response ( ) ( )jY t  to the sample function ( ) ( )
0 ( )j ja W t  by 

integrating the equation of motion; v) repeat the procedure for a large number of samples; vi) 
evaluate the desired statistics of the response by processing the samples ( ) ( )jY t . It follows 
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that in the non-linear case, since no exact solutions are available, the most efficient way to 
perform the probabilistic characterization of the response to sub-Gaussian input, among those 
herein examined, consists in the joint application of the proposed procedure and MCS 
according to Eq. (18). 

6 CONCLUSIONS 

A method for evaluating the probability density function and characteristic function of the 
response of linear and non-linear systems driven by α -stable sub-Gaussian processes has 
been presented. The main idea is that the sub-Gaussian input may be viewed as a conditional 
Gaussian process, namely as a Gaussian process (the underlying one) having random 
amplitude (the square root of an / 2α -stable random variable). So operating, the statistics of 
the system response to the sub-Gaussian input can be obtained from those of the response to 
the conditional Gaussian process simply performing ensemble averages with respect to the 
random amplitude. It has also been shown that in the linear case the characteristic function 
can be determined in closed-form since the response process is a sub-Gaussian one. 
According to the present procedure, the probabilistic characterization of the response to α -
stable sub-Gaussian input actually exhibits the same difficulties as in the case in which the 
relevant system is driven by a Gaussian process. It follows that the main tools of classical 
random vibration theory can be still exploited when the input process is a sub-Gaussian one. 
In particular, if the underlying Gaussian process is a white noise, one may take full advantage 
of the Itô stochastic differential calculus. 

The accuracy of the proposed approach has been assessed through numerical applications 
concerning both linear and non-linear one-dimensional systems under sub-Gaussian input. In 
the linear case the estimates of the response statistics have been shown to be in good 
agreement with the exact solutions. On the other hand, appropriate comparisons with Monte 
Carlo simulation results have demonstrated the effectiveness of the present procedure even 
when system nonlinearities are involved. 
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APPENDIX – Multi-degree-of-freedom (MDOF) systems under sub-Gaussian input  

In this Appendix, the formulation presented in the paper for one-dimensional systems is 
properly extended to the case of multi-degree-of-freedom (MDOF) systems. 

Let the equations of motion of a n -DOF system driven by a sub-Gaussian input be given 
in the following form: 

1/ 2

0

( ) ( ( ), ) ( );

(0) ,

t t t A tY f Y G

Y Y

& = += += += +
====

 (A.1) 

where [[[[ ]]]]T

1 2( ) ( ), ( ), , ( )nt Y t Y t Y tY K==== ; ( ( ), )t tf Y  is a n -vector listing arbitrary linear or 

non-linear functions of ( )tY  and t ; ( )tG  is a vector of order n  collecting zero mean 
Gaussian processes with assigned autocorrelation matrix; A  denotes an / 2α -stable random 
variable totally skewed to the right ( 2/

/ 2((cos / 4) ,1,0)A S α
α πα� ) and independent of ( )tG ; 

0Y  is the n -vector of initial conditions, here supposed to be a zero mean random vector with 

given covariance matrix, independent of ( )tG . 
In analogy with the one-dimensional case, the probabilistic characterization of the vector 

process ( )tY  is performed through two successive steps. The first step consists in finding the 
response statistics of the following system: 

1/ 2

0

ˆ ˆ( ) ( ( ), ) ( );

ˆ ˆ(0) ,

t t t a tY f Y G

Y Y

& = += += += +

====
 (A.2) 

where 0a >  is a real parameter representing the generic realization of the random variable A  

and 0Ŷ  is supposed to be a zero mean Gaussian random vector with given covariance matrix. 

In the case in which ˆ( ( ), )t tf Y  is a vector collecting linear functions, the response vector 
ˆ ( )tY  is a zero mean Gaussian one whose unconditional PDF and CF, ˆ ( ; , )p a t

Y
y  and 

ˆ ( ; , )a tφ
Y

ϑϑϑϑ , are known in explicit form as follows: 

T 1
ˆ ˆ1/ 2

ˆ

1 1
( ; , ) exp ( ; ) ;

2(2 ) ( ( ( ; )))n
p a t a t

Det a tπY Y

Y

y y y−−−−    = − Σ= − Σ= − Σ= − Σ    
    ΣΣΣΣ

 (A.3) 

T
ˆ ˆ

1
( ; , ) exp ( ; ) ,

2
a t a tφ

Y Y

    ϑ = − ϑ Σ ϑϑ = − ϑ Σ ϑϑ = − ϑ Σ ϑϑ = − ϑ Σ ϑ    
    

 (A.4) 
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being T
ˆ

ˆ ˆ( ; ) [ ( ) ( )]a t E t t=
Y

Y YΣΣΣΣ  the covariance matrix of ̂( )tY . The joint PDF and CF of ̂( )tY  

at two different time instants 1t  and 2t  are given, respectively, by: 

1 2 1 2

1 2

T

1 11
ˆ ˆ ˆ ˆ1 2 1 2 1 21/ 2

2 2ˆ ˆ 1 2

1 1
( , ; , , ) exp ( ; , ) ;

2(2 ) ( ( ( ; , )))n
p a t t a t t

Det a t tπY Y Y Y

Y Y

y y
y y R

y yR
−−−−

                    = −= −= −= −                
                    

 (A.5) 

1 2 1 2

T

1 1
ˆ ˆ ˆ ˆ1 2 1 2 1 2

2 2

1
( , ; , , ) exp ( ; , ) ,

2
a t t a t tφ

Y Y Y Y
R

    ϑ ϑϑ ϑϑ ϑϑ ϑ                ϑ ϑ = −ϑ ϑ = −ϑ ϑ = −ϑ ϑ = −                ϑ ϑϑ ϑϑ ϑϑ ϑ                    

 (A.6) 

where ˆ ˆ ( )i it=Y Y , ( )i it=y y , ( 1,2i = ), and 
1 2

ˆ ˆ 1 2( ; , )a t t
Y Y

R  is defined as:  

1 2

T T
1 1 1 2

ˆ ˆ 1 2 T T
2 1 2 2

ˆ ˆ ˆ ˆ[ ] [ ]
( ; , ) .

ˆ ˆ ˆ ˆ[ ] [ ]

E E
a t t

E E
Y Y

Y Y Y Y
R

Y Y Y Y

    
====     
        

 (A.7) 

In view of the linearity of the system, ̂ ( ; )a t
Y

ΣΣΣΣ  and 
1 2

ˆ ˆ 1 2( ; , )a t t
Y Y

R  can be evaluated by means 

of the following relationships: 

1 21 2
ˆ ˆ ˆ 1 2 1 2( ; ) ( );   ( ; , ) ( , )a t a t a t t a t tY Y YY Y Y

R R% % %Σ = Σ =Σ = Σ =Σ = Σ =Σ = Σ =  (A.8) 

where ( )tY%  denotes the solution of Eq. (A.2) for 1a =  ( ( ) ( ( ), ) ( )t t t tY f Y G&% %= += += += + ). 

Taking into account that the sub-Gaussian input 1/ 2 ( )A tG  may be viewed as a conditional 
Gaussian vector process, the unconditional PDF and CF of ( )tY  can be obtained performing 

ensemble average of ̂ ( ; , )p A t
Y

y  and ˆ ( ; , )A tφ
Y

ϑϑϑϑ , respectively: 

ˆ ˆ

0

ˆ ˆ

0

( ; ) [ ( ; , )] ( ) ( ; , )d ;

( ; ) [ ( ; , )] ( ) ( ; , )d ,

A

A

p t E p A t p a p a t a

t E A t p a a t aφ φ φ

∞

∞

= =

= =

∫

∫

Y Y Y

Y Y Y

y y y

ϑ ϑ ϑϑ ϑ ϑϑ ϑ ϑϑ ϑ ϑ
 (A.9a,b) 

being ( )Ap a  the PDF of the random variable A . In a similar way, the joint PDF and CF of 

( )tY  at two different time instants 1t  and 2t  can be evaluated as follows: 

1 2 1 2 1 2

1 2 1 2 1 2

ˆ ˆ ˆ ˆ1 2 1 2 1 2 1 2 1 2 1 2

0

ˆ ˆ ˆ ˆ1 2 1 2 1 2 1 2 1 2 1 2

0

( , ; , ) [ ( , ; , , )] ( ) ( , ; , , )d ;

( , ; , ) [ ( , ; , , )] ( ) ( , ; , , )d .

A

A

p t t E p A t t p a p a t t a

t t E A t t p a a t t aφ φ φ

∞

∞

= =

= =

∫

∫

Y Y Y Y Y Y

Y Y Y Y Y Y

y y y y y y

ϑ ϑ ϑ ϑ ϑ ϑϑ ϑ ϑ ϑ ϑ ϑϑ ϑ ϑ ϑ ϑ ϑϑ ϑ ϑ ϑ ϑ ϑ
 (A.10a,b) 

It has to be mentioned that the probabilistic descriptors above defined can be obtained in 
closed-form taking into account that since the system is linear, the following relationship 
holds: 

1/ 2( ) ( ).t A tY Y%====  (A.11) 
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According to Eq. (A.11), the response vector ( )tY  is sub-Gaussian with underlying Gaussian 

vector process ( )tY% , so that its unconditional and joint CFs are given, respectively, by (see 
Eq. (6)): 

/ 2
T1

( ; ) exp ( ) ;
2

t t
α

φY Y%

        ϑ = − ϑ Σ ϑϑ = − ϑ Σ ϑϑ = − ϑ Σ ϑϑ = − ϑ Σ ϑ    
        

 (A.12) 
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 (A.13) 

In the case of MDOF non-linear systems under sub-Gaussian input, the statistics of the 
response can be still evaluated by means of Eqs. (A.9) and (A.10), while Eqs. (A.12) and 
(A.13) do not apply since the response vector ( )tY  is no longer a sub-Gaussian one. 
Unfortunately, the use of Eqs. (A.9) and (A.10) is not so straightforward as in the linear case, 
because closed-form solutions in terms of response PDF or CF for MDOF non-linear systems 
subject to the Gaussian input 1/ 2 ( )a tG  are very rare. In this regard, it is worth mentioning that 
exact solutions are available for the stationary response PDF of some MDOF non-linear 
systems driven by external and/or parametric Gaussian white noise excitations5,28. In any case, 
if the underlying Gaussian vector process ( )tG  in Eq. (A.1) collects Gaussian white noises, 

i.e. 0( ) ( )t t≡G W , the powerful tools of the Itô stochastic differential calculus can be used to 

obtain the statistics of the response vector ˆ ( )tY  to the input 1/ 2
0( )a tW  (see Eq. (A.2)), as 

required by the proposed approach. Specifically, the PDF, ˆ ( ; , )p a t
Y

y , can be evaluated as 

approximate or exact solution (if it does exist) of the FPK equation: 

ˆ T T[2]
ˆ ˆ

( ; , )
( ( , ) ( ; , )) ( ( ; , ))

2

p a t a
t p a t p a t

t
Y

y yY Y

y
f y y y q

∂∂∂∂
= −∇ + ∇= −∇ + ∇= −∇ + ∇= −∇ + ∇

∂∂∂∂
 (A.14) 

where [[[[ ]]]]T
1 2/ , / , , / ny y yy K∇ = ∂ ∂ ∂ ∂ ∂ ∂∇ = ∂ ∂ ∂ ∂ ∂ ∂∇ = ∂ ∂ ∂ ∂ ∂ ∂∇ = ∂ ∂ ∂ ∂ ∂ ∂ ; the exponent into square brackets means 

Kronecker power30,31; q  is a 2n − vector whose elements are the strengths of the white noises 

0, ( )jW t . On the other hand, the CF, ˆ ( ; , )a tφ
Y

ϑϑϑϑ , is ruled by the following partial differential 

equation: 

ˆ T T [2]T
ˆ

( ; , ) ˆ ˆi [exp(i ) ( , )] ( ; , ) .
2

a t a
Ε t a t

t

φ
φY

Y
Y f Y q

∂ ϑ∂ ϑ∂ ϑ∂ ϑ
= ϑ ϑ − ϑ ϑ= ϑ ϑ − ϑ ϑ= ϑ ϑ − ϑ ϑ= ϑ ϑ − ϑ ϑ
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 (A.15) 

If the j -th element of the drift vector ˆ( , )tf Y  is a polynomial of the type:  

T [ ]

1

ˆ ˆ( , )
m

k
j jk

k

f tY c Y
====

====∑∑∑∑  (A.16) 

then, recalling that the following relationship: 

[ ] T [ ]
ˆ

ˆ ˆ[ exp(i )] = ( i) ( ( ; , ))k k k
Ε a tφ

Y
Y Y ϑϑϑϑϑ − ∇ ϑϑ − ∇ ϑϑ − ∇ ϑϑ − ∇ ϑ  (A.17) 

holds, Eq. (A.15) may be rewritten in terms of the unknown CF ˆ ( ; , )a tφ
Y

ϑϑϑϑ  and its partial 

derivatives. 
 


