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Abstract. The paper deals with the analysis of linear and-hoear systems under a special
class of symmetriar -stable stochastic processes, nhamely sub-Gaussiaitagons. Such
processes are defined multiplying the square rdaoa / 2-stable random variable totally
skewed to the right by a zero mean normal procets agsigned autocorrelation function.
Relying on the observation that the sub-Gaussipatimay be viewed as a Gaussian process
with random amplitude having/2-stable distribution, it is shown that the characdgc
function and the probability density function o tlesponse can be obtained from those of the
system subject to the underlying Gaussian procggselforming simple integrals. It is also
observed that linear systems are amenable to clém®d solutions in terms of characteristic
function of the response. Appropriate comparisoitk thhe exact solutions and Monte Carlo
simulation results demonstrate the accuracy of ghecedure in the linear and non-linear
cases, respectively.

Sommario. Oggetto del presente lavoro € I'analisi di sistdiméari e non-lineari soggetti a
una particolare classe di processi aleatori simnoetra -stabili, noti come processi sub-
Gaussiani. Tali processi sono definiti moltiplicantéa radice quadrata di una variabile
aleatoria a/2-stabile totalmente deviata a destra per un progeskeatorio Gaussiano a
media nulla di assegnata funzione di autocorrelagioOsservando che una forzante sub-
Gaussiana pu0 essere considerata come un procesaossano caratterizzato da
un’‘ampiezza aleatoria avente distribuziome/ 2-stabile, viene mostrato che la funzione
caratteristica e la funzione densita di probabilidlla risposta possono essere ottenute a
partire da quelle del sistema soggetto al proceSsmissiano di base mediante il calcolo di
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integrali semplici. Si osserva, inoltre, che pestsmi lineari la funzione caratteristica della
risposta puo essere determinata in forma chiusactlratezza della procedura & dimostrata
mediante opportuni confronti con le soluzioni esatel caso lineare e con i risultati della
simulazione Monte Carlo nel caso di sistemi noedin

1 INTRODUCTION

The Central Limit Theorem (CLT) justifies the exsere use of Gaussian processes for
modeling a wide class of physical phenomena. Wathdished techniques for the analysis of
linear and non-linear systems under Gaussian in@ayt be found in classical textbooks on
random vibration theofy. In this context, a central role is played by tBaussian white
noise process, formal derivative of the so-calle@n®r process. Indeed, the special features
of the Wiener process enable to perform the praistibicharacterization of the response to
Gaussian white noise input by using the powerfalstof Itd stochastic differential calcufus
However, many real phenomena observed in physgismslogy, electrical engineering,
economics, etc., are non-Gaussian in nature, gb#leng to a heavy-tailed distribution class
or have impulsive nature. The necessity of non-&Gaunsmodels for describing the large
fluctuations exhibited by such phenomena have dagseincreasing interest in the so-called
a -stable Lévy processesSuch processes are characterized by four paresnétestability
indexa J(0, 2], thescaleo >0, theskewnesg3 [J[-1,1] and theshift 00 . An appropriate
selection of the parametets, o, £ and u yields a rich variety ofr -stable Lévy noises,
which may be adequately used to model various phena such as income distributions in
economics, seismic ground acceleration in earthejgalgineering, gravitational forces acting
on stars, etc. The Gaussian white noise is a dpsse of ther -stable Lévy white noise for
a =2. The response of linear and non-linear system&drby a -stable Lévy white noises
has been widely investigated in the literafiffeworking either in terms of Probability
Density Function (PDF), ruled by the Einstein-Sneblowsky (ES) equatidh’’ or of
Characteristic Function (CF). GrigoHuobtained closed-form solutions for the CF and the
mean up-crossing rate of the response of linedesstoa -stable processes based on the
integral and series representation of the inputgss. Non-linear systems have been handled
by different approaches such as digital simulafién'* path integral methdd equivalent
linearization techniqué and wavelet expansith Closed-form expressions of the PDF or CF
can be found only in the stationary case for soroalas systems with polynomial
nonlinearitie$®*°

This paper is devoted to the analysis of linear @otlinear systems under a special class
of symmetric a -stable processes, namely sub-Gaussian excitatbush processes are
defined as the product of a zero mean Gaussiargs&(t) , having assigned autocorrelation

function, and the square root of ari 2 -stable random variablex(< 2), A, totally skewed to
the right (8 =1) and independent dB(t) . The sub-Gaussian proces*G(t) is also called
subordinateto the underlying Gaussian proce€Xt). In the linear case, closed-form
solutions in terms of CF can be easily obtainedtdiing into account that the response
process to the above defined input is sub-Gauss@nThe procedure presented in the paper
relies on the observation that the subordinatetimg(fG(t) may be viewed as a conditional
Gaussian process, namely as a Gaussian processawitbm amplitude having /2 -stable
distribution. Specifically, it is shown that theopabilistic characterization of the response of
dynamic systems under sub-Gaussian input can Herpexd starting from the response
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statistics of the system subject to the underly@agissian process. In this regard, it has to be
mentioned that, while closed-form solutions areaglsvavailable for the PDF and CF of the
response of linear systems under Gaussian inpuhennon-linear case the evaluation of
response statistics is not an easy task. Nevesthelethe underlying Gaussian process is a
white noise, the PDF is known in explicit form fesome special classes of non-linear
system3?®? In the other cases, approximate solutions ofptaeial differential equation
ruling the PDF (Fokker-Planck-Kolmogorov equatiam)the CF can be obtained by any of
the procedures developed in the literature.

Some numerical results concerning the response &FCF of one-dimensional linear
and non-linear systems under-stable sub-Gaussian input for various values efstability
index are presented in the paper. The accuracheofptoposed procedure is demonstrated
through appropriate comparisons with the exacttsmiuand Monte Carlo simulation (MCS)
data in the linear and non-linear cases, respégtive

2 a-STABLE RANDOM VARIABLES AND PROCESSES

In this section, some basic concepts concermingtable random variables and processes
are briefly summarized for clarity’s sake as wallfar introducing appropriate notations. The
readers interested in this topic are referred anuthers to Samorodnitsky and Tadqu

A random variableX is said to have atabledistribution if for any positive numbens
and n, there is a positive numbgy and a numbeu [ such that:

mX, + nxzi pX+ L (1)

d
where X, and X, are independent copies &f and “=" denotes equality in distribution. The
characteristic function (CF) of such random vagabdenoted ag, (7), is given by:

exp{—a”|:9|”[l— iBsign@ )ta{%)]+ /izﬂ} L ifaz 1
@ (9) = E[exp(iF X)] = (2)

exp{—a|z9|[1+ ';8]—27 sign@ )Ir119|]+ pﬁ} ,ifa=1

where E[[] means stochastic averag'e,:x/——l is the imaginary unit;a1(0,2], >0,
LU[-L1] and OO0 are four parameters commonly referred to séability index (or
characteristic exponeptscale parametefor dispersior), skewnesgor asymmetry andshift
(or location), respectively. The index of stability describes the tails of the probability
density, the parameterg and [ govern, respectively, the spread and skewnes$ef t
distribution around its center which is defined thye shift 4 with respect to the origin.
Random variables having a CF as in Eq. (2) are eddled a -stable random variableand
are denoted aX [J S, (g, B,u). In the case in which3 = =0, the random variableX is
symmetric and is denoted aX [J S, S. The probability densities otr -stable random
variables exist and are continuous, but they atalays known in a simple explicit form. In
fact, the Inverse Fourier Transform of the CF in &) can be performed analytically only in
few special cases: th&aussian distribution X[ S(o,0,u), the Cauchy distribution

Meccanica dei Materiali e delle Strutture | 1 (2009), 1, PP. 55-75 57



M. Di Paola, A. Sofi.

X0 §(o,0,u) and theLévydistribution X 11 §,,(g,1,u). Specifically, for normal random
variables ¢ =2) the scale parametes is proportional to the standard deviatian,

(oy =x/§0), the skewnes#® can be taken to be zero apdis the mean.

The striking feature ofa -stable random variables is that their Probabilignsity
Function (PDF) has inverse power tails, which implthat the tails decay more slowly than
those of Gaussian distributions. Specifically, thee of decay depends on the characteristic
exponenta , in such a way that the smaller heavier the tails. As a consequence, the
variance and higher order statistical momentg e$table random variables are infinite, with
the exception of the cage=2 (Gaussian distribution). In fact, far (0, 2):

E[|X|r]=oo, forrza;
3)
E[|X|r]<oo, forrd (0a).

Of course, wherr <1 the mean is infinite as well.
A random variableX = A"?’G is S, S (a <2) if G has a zero mean Gaussian distribution,

Gl S(0,0,0), and A is an a/2-stable random variable totally skewed to the right
Al S,,,((cosgmr /4)§" ,1,0, and independent o& . Such random variables are also called
sub-Gaussiamr subordinateto G and have the following CF:
al2
} (4)

where o, denotes the standard deviation®f. It can be observed that ea&) S random

2 (9) = Elexp(igX)] = exp{—‘% 52

variable is conditionally Gaussigmamely X = A">’G may be viewed informally as normal
with the random variance? A.

Similarly, a random vectoX 000 " is calledsub-GaussianS, S (a <2) with underlying
Gaussian vecto6 or subordinateto G if it is defined as:

X=A""G (5)
being AU S,,,((cosgmr /4)§'“ ,1,0 independent ofG. The CF of the random vectoX
defined in Eq. (5) takes the following form:

al2
} (6)
wherea; =E[G,G].

An ¢ -stable stochastic procet{sX(t), tDT} may be defined as ao -stable random
variable depending on the parameterket

Let {G(t), tDT} be a zero mean Gaussian process and\l&e ana/2-stable random
variable Al S,,,((cosrmr 14§'7 ,1,0, (a <2), independent of5(t), then X (t) = A*G(1) is
asub-Gaussian procesgnose CF is given by:

n

Z 2791' Xy

=1 k=1

% (9) = Elexp(i8'X)] = exp{—

N
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@ (9;1) = E[exp(id"X)] = exp{—

N

al2
22 99R .q } )
j=1 k=1
where X' =[X(t), X(L)..... X()], & =[&......8], t'=[t.t,....t] and
R.(t, )= EHt) A 1)] is the autocorrelation function of the underlyiBgussian process
G(1).

In the next sections, the probabilistic charactgrmn of the response of scalar systems
subject to a -stable excitations will be addressed. In particuén effective approach for
evaluating the response PDF and CF in the speeais¢ ©of sub-Gaussian input will be

presented. The extension to multi-degree-of-freedMDOF) systems is reported in the
Appendix.

3 a-STABLE LEVY NOISE EXCITATION

In analogy to the Gaussian white nowg(t), given by the formal derivative of the Wiener
processBy(t), ana -stable Levy white nois@/ () may be defined as
dL, (t)

dt

where L, (t) denotes the corresponding-stable Lévy motion process. Zero-shift and zero-

skewness processes belonging to this class engofollowing properties: i) start from zero,
that is L,(0)=0, with probability one; ii) feature stationary aimtlependent increments

L,(t)-L,(s), t>s, having thea -stable distributionS, ((t- 9,0,0), so that the CF of
the incremendL, (t) takes the form

W, (9= (8)

@ (9)= exp(- d|s|") . )

Notice that fora - 2, dL,(t) - x/ECBO ), where dB,(t) is the increment of the Wiener

process.
Let us now consider a first-order system exciteciy -stable Lévy white noise

V()= f(Y, 0+ W () ©0

10
Y(0)=Y, o)

where a dot over a variable denotes time derivati¥, t) is an arbitrary function; any, is
the initial condition, here assumed to be a zerarm&andom variable independent of the
stochastic excitatiolV (1).

The evolution of the response PDRy,(y,t), is ruled by the so-called Einstein-
Smoluchowsky (ES) equatibir®

op (V1) _

°p (v
ot (1)

9
~ f L ]
ay[ (v, (v O]+ oF
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where the symbola”(D)/a|y|” in the diffusion term denotes the Riesz-Weil fiawcal

derivativé*?>
For a well-behaved functiomp, (y, t), the following relationship holds:

F [M} =-9" @1 (12)
aly|

where F [[] is the Fourier Transform operator aggl,t) is the CF of the response, i.e.
@(3,t)=F [p,(y, 1] . Taking into account Eq. (12), the Fourier Transfof the ES equation
(11) yields the following equation for the respoie

agB.) _. o9l
%m%[f(v,t)é 1-18" 2.9 (13)

which is often called spectral ES equation.

As shown by Di Paola and Faflfa Eq. (13) can also be built by applying the rubés
stochastic differential calculus, thus allowing wamghtforward generalization to MDOF
systems. Exact solutions of the spectral ES equdieve been obtained for some scalar
systems with polynomial nonlinearities, only in th&tionary casé®® (dg(I,1)/0t =0).
Though much more tractable mathematically thanB8eequation (11), Eq. (13), in general,
should be solved numerically with high computatiooasts. Recently, an approximate
solution procedure based on the joint use of wavwelpresentation and weighted residual
method has been propodéd

4 a-STABLE SUB-GAUSSIAN EXCITATION

Let us now assume that the scalar system (10bjecto a special kind of symmetric-
stable process, namely a sub-Gaussian excitation:

Y(t)= f(Y, 9+ A?Q); &0

Y(0)=¥ -

where, according to the notation introduced in Back, G(t) is a zero mean Gaussian
process with assigned autocorrelation functi(t;,t) = Ht) G f)]; and A denotes an

al2-stable random variable totally skewed to the rigt] S, ,((cosmmr /4§ ,1,0) and
independent of5(t) .

The above problem is here tackled observing tha{) may be regarded as the equation
of motion of a scalar system driven by a zero m@assian proces&(t) with random
amplitude A2, On the other hand, since the proce&$°G(t) is not ergodic, for each
realization of the random variabl&, say a >0, the input in Eq. (14) is Gaussian and takes
the form a*?G(t). Relying on the previous observations, the prdisdioi characterization of
the response procesg(t) under the sub-Gaussian input may be pursued thrdwg
successive steps. The first step consists in fqndive statistical properties of the random
process\?(t) , ruled by the following first-order differentiatjgation:
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V()= f(Y, 9+ &2Q); ©0,p>0 (15)
Y(0)=Y,

which is obtained from Eq. (14) replacing the ramdeariable A with its generic realization
a. As will be outlined in detail next, for linearstgms exact closed-form expressions of the

PDF and the CF of'(t) can be easily obtained by classical random vibnatihneory, while, in

general, approximate procedures are required imdimelinear case. Furthermore, it is noted
that such functions will depend on the parametethat is p,(y; a t) andg (&;a,1).

The second step of the present procedure considteiprobabilistic characterization of
the response proced4t) under the sub-Gaussian inp&t'*G(t) by using the statistics of the
responseY(t) to the Gaussian process’?G(t), defined in the previous step. For this
purpose, it is observed that within the intera a+da] the input a’?G(t) and the
associated response procé%(st) occur p,(a)da times, beingp,(a) the PDF of the random
variable A. It follows that the PDF and the CF of(f) may be obtained simply by
performing ensemble average pf(y; A f) and @ (J; A t) over the whole set of realizations

of A, once the parametex has been duly replaced by thg 2 -stable random variabld,
that is:

Py )=HR(¥ All=] R(R K ya)l 2
° (16a,b)

2@ =El@@ A= p(dn(S a)da

In a similar way, the joint PDF and CF at two diffet time instantd, andt,, can be
computed as:

P Vi )= E Ry (% % AL DI=[ R(Rp (Y ¥ at)d;
0 (17a,b)

B, 01, 051,15) = E[%\}Z(ﬂrﬂz; A’trtz)]:'[ pA(a)%l\‘(z (F,7;att)da
0

As regards the second step of the above descritmmgure, it is worth noting that the
evaluation of the integrals in Eq. (16) (or Eq.)jImay be quite involved. In fact, the PDF of
the a/2-stable random variablé, p,(a), which is obtained making the Inverse Fourier
Transform of the CFg, () (Eq. (2) whereo = (cosgmr /4)§"”, =1 and x=0), does not
take a simple analytical form for any value of. Since p,(y;t) and @ (Z;t) are the
stochastic averages qf, (y; At) and @ (J; A t), respectively, an efficient way to avoid the

evaluation of the integrals in Eq. (16) consistsimulating a large number of sampfesf
A, say N, and then applying the following relationships,cacling to Monte Carlo
simulation (MCS) method:
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M=

p(Y)=HR(y A)DO R(y &, )

1
N 4

B(9:0 = El@ (% A D 0= Y a3 4, §

!
iy

(18a,b)

=z

being a’ the j—th realization of A. Obviously, an analogous procedure may be followed

to obtain the joint PDF and CF given in Eq. (17).

It is noted that the presented procedure allowsdace the analysis of a system under sub-
Gaussian input to the one of the same system duiojebhe underlying Gaussian process. In
this respect, the probabilistic characterizatiorthaf response tar -stable Lévy white noise,
discussed in Section 3, turns out to be much miffieudt since it requires the solution of the
ES equation or of its spectral counterpart.

In the sequel, the application of the proposed @ggr will be described in detail
considering separately linear and non-linear system
4.1 First-order linear systems under sub-Gaussiamput

The simple case of a linear half oscillator unddr-&aussian input is first treated:

Y()=-pY()+ A*QE); ©0,p>0 (19)
Y(0)=Y,.

The statistics of the response proc&4$) may be easily evaluated taking into account
that, since the equation of motion (19) is linelae, following relationship holds:

Y(1) = A2Y() (20)

whereY(t) denotes the response of the linear system suljéise underlying Gaussian input
G(t), say fora=1 (\?(t) =-pY(9+ Q)). If the initial conditionY, is supposed to be a zero
mean Gaussian random variable, thé) is a zero mean normal random process. Therefore,
it clearly appears that the respon¥é¢t) defined in Eq. (20) is sub-Gaussié) S with

underlying Gaussian proce¥<t). According to Eqgs. (4) and (7), the unconditioaat! joint
CFs of Y(t) are given, respectively, by:

4 =exp{—‘%ﬂza§ (tf } ; (21)

alz} (22)

Alternatively, the same result may be obtained pglyng the proposed procedure. For
this purpose, first the statistical properties loé tresponse proceé%(t) to the Gaussian
excitation a”’G(t) (Eg. (15)) have to be evaluated. For simpliciséke, the initial condition

1
By, G, I51,1,) = eXp{_‘ESTRV €10

A

Y, is supposed to be a zero mean Gaussian randoablegrso that the respons?eﬁt) is a

zero mean Gaussian process, whose complete pristialtharacterization is ensured by the
knowledge of the autocorrelation functid® (t;,1 ). In view of the linearity of the system,
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R:(t,%) may be simply obtained by first evaluating theoaatrelation functionR(t;,t ) of

the response proced&(t) to the underlying Gaussian inp@(t), say fora=1, and then
applying the following relationship:

R (%, %)= aR (1. f)- (23)

The procedure for deriving the autocorrelation fiorc of the random procesg(t) can be
found in classical textbooks on random vibratiosotty’.
According to Eg. (23), once the autocorrelation clion R,(t,t) is known, the

unconditional PDF and CF of the Gaussian prorﬁé@:}z can be obtained, respectively, as
follows:

_ 1 Y.
p(y:at)= s, (t)eX;{ 2807 (t)],
@ (3at)= exp(—%ﬁzaaf (t)] :

(24a,b)

being UY?(t) = aUY?(t) and JY?(t) =R, (t,t). Second-order statistics may be evaluated in terms
of joint PDF or CF at two different time instart{sandt, given, respectively, by:

Pos, (Y Yor 8 8, )= p{ - "R G 1, )/}
2na(Det(R (tlt)

a
%92(791,192;31t11t2): eXp{_E’STRY () ’tZﬁ} '

(25a,b)

where Y, = Y(1), ¥ = ¥(1), (=1.2), y" =y, %5] and 9" =[5, 8,]. In Eq. (25).R, (t,.t,)
denotes the autocorrelation matrixbf :[\?1\?2] (Y, =Y(1), i =1,2), given by:

oot | Oo(t)  R(4,t)
R, (t,t,) =E[YYT] = N 26
(ot =EYY] {R;(tz,tl) aq(tz)} (20)

Notice that both the PDF and the CF %(t) may be regarded as functions of a random

parameter since they depend on the generic realizat the random variablé .

Then, following the proposed approach, the uncamthd (or joint) PDF and CF o¥(1)
may be obtained simply by evaluating the integiralsq. (16) (or Eq. (17)).

Summarizing, the presented procedure for the pibtbcharacterization of the response
of a linear system driven by a sub-Gaussian progg$6(t) requires:

)] to compute the autocorrelation functidR, (t;,t) of the response?(t) to the
Gaussian process’°G(t) through Eq. (23);

i) to evaluate the unconditional (or joint) PDF and @fFthe Gaussian response
processY(t) by means of Eq. (24) (or Eq. (25));
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iii) to perform ensemble average pf(y; At and @ (J; A t) (or pm(yl, Yo; At L)
and Rss, (&.,9,; At,t,)) according to Eq. (16) (or Eq. (17)).

4.2 First-order non-linear systems under sub-Gausan input

Let us now consider the general case in whid€l, t) in Eqg. (14) is an arbitrary non-linear
function.

Since the system is non-linear, Eq. (20) does mmyaand, in general, closed-form
solutions in terms of PDF or CF cannot be derivigte proposed approach first requires to

evaluate the statistics of the random proc‘ése ruled by Eg. (15). However, due to the
nonlinearity of the system, the responég) to the zero mean Gaussian proca¥éG(t) is

non-Gaussian and the evaluation of its exact PDEFors a very hard task. Nevertheless, in
the case in whiclG(t) is a normal white noise, analytical expressionshef response PDF

are available for some special classes of non{lirestem3?®?® Once the exact or
approximate PDF and CF of(t) are known, the probabilistic characterization bé t
response procesy(t) under the sub-Gaussian input can be still perfdrime applying Egs.

(16) and (17). Indeed, such equations are noteeltd the Gaussianity of the procé%(st)

since they stem from the interpretation of the &amssian input as a conditional Gaussian
process.

In order to clarify the concepts stated aboveuktassume that the underlying Gaussian
processG(t) is a zero mean normal white noise, I&t) =W, (1), fully characterized by the

autocorrelation function:

Ry (1, 5) = EW()W( 9] = a( - 9 (27)

where J() denotes the Dirac’s delta function ang= 277, being S, the Power Spectral
Density (PSD) ofw,(t). In this case, the input in Eq. (14p7°G(t) = A'>W( ), will be

termedsub-Gaussian white nois® subordinatea -stable white noisand is here denoted as
W, (t). It is recalled that the white nois& (t) is the formal derivative of the Wiener process

B,(1), that isW,(t) =dB,(t)/dt (E[B,()]=0;E[B(f)] = git). Similarly, the sub-Gaussian
white noiseW, (t) may be defined as the formal derivative of thé-Gaussian Wiener
process B, (t) = A’’B,(1) . The process$, (t) enjoys some important properties:
)] it has independent stationary incremenB; () - B,(9, t>s) following the a-
stable distribution, that i8_(t)-B,(90 S,(((t- 9/2)"?,0,0), t >0;
i) the CF of an increment of the sub-Gaussian Wienecgss,dB, (t) = A'*dB, (t),
takes the form:

B, 0 (9) = exp( = (a 12| (28)

iii) for a - 2, dB,(t) - dB,(t), so that the Wiener process may be viewed as a
particular case of the proceBs(t).

By virtue of property i), the main tools of the Isbochastic differential calculus can be
used for analyzing the response of non-linear aystariven by sub-Gaussian white noises. In
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particular, since the increments of the subordivéiener proces®8,(t) are independent, one

may take full advantage of the non-anticipatingoemty.
A comparison may be reasonably made between th&aubsian white noisé/, (t) and

the Lévy white noise\ (1) (see Section 2) as both processesasstable. Specifically, it
can be observed that property i) is fulfilled fasth the incrementsiB, (t) = A’*dB, (t) and
dL, (t) =W_ ()dt, whereas the CFg, ,(F) (Eq. (28)) andg, (@) (Eg. (9)), are quite
different. By comparing Egs. (28) and (9), it cam ibferred that the process¥g (t) and
W_ (9 have different scales.

Once the basic features of the input prodaisét) = A’*W() have been outlined, Eq. (14)
(where G(t) =W, (1)) may be converted into the standard It form é&evics:

dY (t)= (Y, tdt+ A?dB (1), (29)

Then, replacing the random variabke with its generic realizatiora, the Itd type equation
for the response proce¥$t) to the inputa'’2W, (1) is obtained

dY (t) = (Y, dt+ d'2dB (1. (30)
Notice that in Eq. (29) the input is representedahyincrement of the sub-Gaussian Wiener
processdB, (t) = A’?dB, (t), while in Eq. (30) the system is subject to arréneent of the
Wiener processiB, (t) multiplied by the square root of the generic zation of the random
variable A. As already mentioned, the first step of the pegub procedure consists in

evaluating the statistics df(t). Such process is a Markov one whose unconditi&F
P, (y; a 1) is ruled by the well-known Fokker-Planck-Kolmoger@PK) equation:

oy (viat) @ 0’ R(¥%a)
e -ay(f(y,t)py(yat)) a— (31)

Alternatively, \?(t) may be characterized evaluating the @f(J;a,t), as solution of the
following partial differential equation:

a@(ﬂ Y e £y 1)exp(lz9Y)]—— afg(s; ay (32)

which can be obtained S|mply by making the Foufiemsform of the FPK equation (31). If
f(\?,t) is given by a polynomial of the typé(\?,t)=2q<\?k(b, taking into account the
k=1

well-known relationship:

E[V* exp(i8Y)] = (-i)* %, (33)
the equation ruling the CF takes the form:
g
BEED <193 o' RAULLLEE SSIEEYY (34)

0
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Both Eqgs. (31) and (32) (or (34)) should be suppgleted by the appropriate boundary and
initial conditions.

Unfortunately, the analytical solution of the pr@aws partial differential equations presents
severe difficulties, so that several approximatehméques have been developed in the
literature. Nevertheless, closed-form stationarltsans of the FPK equation (31) can be
obtained for some special non-linear systems balgng the class ojeneralized stationary
potentiaP?®?® For such systems the proposed approach stillesepts an accurate and
efficient tool since the stationary PDF of the @sge under sub-Gaussian input can be easily
obtained by means of Eq. (16a), once the exaciostaly PDF of the response to the

underlying Gaussian process multiplied &/ is known.

5 NUMERICAL APPLICATIONS

5.1 Stationary response of a linear half oscillatounder sub-Gaussian input
As first example let us consider the one-dimendidinear system under sub-Gaussian
input ruled by Eq. (19), here rewritten for claistgake:
Y()=-pY()+ A2 Q); p>0. (35)

Let G(t) be a zero mean stationary Gaussian process fodyacterized by the following
autocorrelation functionR, (7) :

R.(r) = g% exp(-v|r]); v> 0. (36)

If the motion starts at = -0, then the response proces§t) is stationary too. Furthermore,
as outlined in Section 4.X¥,(t) is an a -stable sub-Gaussian process whose &&7), can

be determined analytically through Eq. (21), ortee dutocorrelation functiorR (7), of the
responseY (1) to the underlying Gaussian proce3§t) is known. The random procest),
solution of the differential equatioﬁ(t) =-pY(9+ q 9, is a zero mean stationary Gaussian
one whose autocorrelation functi®) () takes the following form:

2

&(r):ﬁ{pcosh(ﬁ)—v coshor ¥ sgm([y sinpt Jp sinm(]}) (37)

Then, the exact CF of the stationary respovié®, @ (), is obtained from Eq. (21) setting
o;(t) =02, where o7 =R, (0) =0/ p(p+Vv). The exact stationary PDFp,(y), may be
evaluated making the Inverse Fourier Transformhef €F ¢, (). Similarly, second-order
statistics can be deduced in terms of the exaat & ¢ (J,,7,;7) by means of Eq. (22).

In order to apply the procedure presented in thpepdirst the statistics o‘f’(t), response
to the Gaussian inpua”?G(t), need to be calculated by using Egs. (24) and. 28) this
purpose, the autocorrelation functié)(r) can be evaluated substitutirgy (7) as given in

Eq. (37) into Eq. (23). Then, the unconditional gmdt PDF and CF of the respon¥¢t) to

the sub-Gaussian input can be obtained perfornmisgrable averages according to Egs. (16)
and (17).
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The analysis has been carried out for differeni@slof the stability index, selecting the
parameters in Egs. (35) and (36) as folloys=0.6, g =1 and v =0.8. In Fig. 1, the

stationary CF ofY(t), @ (), evaluated by means of the proposed approachmpaed with

the exact one (Eg. (21)). An analogous comparisoteims of stationary PDFp, (Y), is

shown in Fig. 2, where the exact solution is nowivdel making the Inverse Fourier
Transform of the CF (21). The stochastic averagekd. (16) have been computed both
evaluating numerically the integrals and by MCSnaly generatingN =10000 samples of
the random variablé\ and then applying Eq. (18).

1
0.8+ a=1.5
0.6
T
> \
S N\
0.4+ SN
N a=0.5
N g 0=0.3
0.2 T
a=0.8
0 T T T ?
0 1 2 3 4 5

Figure 1: Stationary CF of the response of thealirfelf oscillator in Eq. (35) for different value$ a : exact
solution (Eqg. (21)) coincident with the proposea ¢&g. (16b)), (continuous line); proposed solutomputed
by MCS (Eg. (18b)), (dashed line); classical MC@r(sols).

1.458

0.972-]

= 0729

o ]
0.486-]

0.243+

0 0.7 14 2.1 2.8

Figure 2: Stationary PDF of the response of thedliralf oscillator in Eq. (35) for different vakief o : exact
solution (Inverse Fourier Transform of Eq. (21))noident with the proposed one (Eq. (16a)), (cardirs line);
proposed solution computed by MCS (Eq. (18a)),l{dddine); classical MCS (symbols).
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As shown in Figs. 1 and 2, the results obtainedutlin the numerical evaluation of the
integrals in Eq. (16) obviously coincide with theaet solutions, but to retrieve the POz (@)
as Inverse Fourier Transform of the characterfstiction ¢, () has not been an easy task due

to the heavy tailed distribution of the/2-stable random variableA. Conversely, the
application of digital simulation according to EB) is more straightforward and robust. At
last, in Figs. 1 and 2 the results deduced by applyrute classical MCS to Eq. (35) are also
plotted. Notice that the proposed procedure yieldsurate estimates in terms of both PDF
and CF of the response even for small values ofllaeacteristic exponermat.

0.56

0.46-
+, 0.36
o
g
> 0.26
S3
0.16-
0.06 T T T T T T T
a) 20 15 10 5 0 5 10 15 20
q
0.76
a,=1 0=0.3
p 2

Figure 3: Stationary joint CF of the response eflthear half oscillator in Eq. (35) for differevilues of,, (a)
r=0.1sand (b)r =0.5 s: exact solution (Eg. (22)) coincident with the posed one (Eq. (17b)), (continuous

line); proposed solution computed by MCS (dasheel)jiclassical MCS (symbols).
Figure 3 displays the stationary joint CFY€t), @, (4,9,;7), for various values of,.

The stability indexa is set equal t®.3 and two different choices af=t, —t,, sayr=0.1s
and 7 =0.5 ¢, are considered. The exact solution given by Bg) {s compared with the
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proposed one (Eq. (17b)) as well as with the requibvided by classical MCS. Specifically,
the stochastic average in Eq. (17b) has been ca@ddgdth solving numerically the integral
and by MCS (with N =10000 samples) following the procedure outlined above tfee
unconditional PDF and CF. It can be observed that results obtained by the present
approach are in good agreement with the exactisnland classical MCS data. In particular,
when the integral in Eq. (17b) is computed numdyichy preliminarily evaluating the PDF
of the random variabléA, as expected, the proposed solution coincides thghexact one.
Further numerical investigations, here omitted &mmciseness, have demonstrated that
varying the stability indexx in the rangg(0, 2], Eq. (17b) still provides accurate estimates of
the joint CF ofY(t).

The results discussed above state that the pradiabdharacterization of the response of
linear systems under sub-Gaussian input may beugdrfollowing four different ways: 1)
exact solution (Egs. (21), (22) and correspondimgeise Fourier Transforms to obtain the
unconditional and joint PDF, respectively); 2) ppepd method based on the numerical
evaluation of the integrals in Egs. (16) and (Bj)proposed approach associated with MCS
(see Eq. (18)); 4) classical MCS.

5.2 Stationary response of a non-linear half oscdtor driven by a sub-Gaussian white
noise

The second example concerns the probabilistic ckeiaation of the response of the
following non-linear system:

Y(t) =-pY()-7Y() + AW (}; p>0,7>0 (38)
where W,(t) is a zero mean stationary Gaussian white noisk autocorrelation function

Ry, (1) = HW() W( #7)] = @(7) . As pointed out in Section 4.2, since the systeman-

linear, Eq. (20) does not apply, whereas the mighips in Egs. (16) and (17) still hold. Let
us then consider the non-linear half oscillatorBg. (38) subject to the Gaussian input

a’ W, (1)

Y() = =p¥(9-V() + & W (9 (39)
being a >0 the generic realization of the random varia®le The above system belongs to
the class ofgeneralized stationary potentialln particular, the stationary PDF of the non-
Gaussian response procé%(st) is known to be:

2 2
p (% 8= @exp[__[py_mﬁﬂ (40)
aq 2 4
where C(a) is a function of the parameter such thatp,(y; @ satisfies the normalization
condition. Then, as stated by Eq. (16a), the statip PDF of the responsé(t) to the sub-
Gaussian white noisep, (Y), can be obtained performing ensemble average, 0; A .
Figure 4 shows the stationary response PPK.y), evaluated for different values of the

stability indexa and the following selection of the parameters=0.5, 7=0.3 and q=1.

The results obtained by applying the proposed phaeeare contrasted with those provided
by classical MCS. As in the previous example, tioelsastic average, defining the stationary
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PDF p,(y) of the response, has been computed both evaluatingerically the integral in
Eq. (16a) and by MCS generatimgj=10000 samples of the random variabfe (Eq. (18a)).
Notice that also in the non-linear case the progpgsecedure yields very accurate estimates
of the response statistics for different valuethefcharacteristic exponeat.

0.9

0.754
0.6
>
5 0.45+
o
0.3

0.15+

0.6

0.45+

p, (V)

0.15+

Figure 4: Stationary PDF of the response of thelivegar half oscillator in Eq. (38) for differentlues ofa :
proposed solution (Eq. (16a)), (continuous linegpmsed solution computed by MCS (Eq. (18a)), (dddime);
classical MCS (symbols).

It has to be emphasized that classical MCS is mmohne onerous than the present
procedure even in the case in which the stochasterages in Eqgs. (16) and (17) are
computed resorting to digital simulation. In fatie application of classical MCS involves the

following steps: i) simulate a sample,a’’, of the random variable
A0 S,,,((cosgmr /4)§“ ,1,0; ii) generate a sampla), (1), of the stationary white noise
W,(t), for instance by means of the wave superpositesed technique proposed by
Shinozuka®; iii) multiply a” by W () to obtain thej -th sample,a®W! (1), of the sub-
Gaussian white noise; iv) evaluate the resporiddt) to the sample functioa” W (1) by

integrating the equation of motion; v) repeat thecpdure for a large number of samples; vi)
evaluate the desired statistics of the responsprbgessing the sampleg” (). It follows
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that in the non-linear case, since no exact salgtire available, the most efficient way to
perform the probabilistic characterization of tkeeponse to sub-Gaussian input, among those
herein examined, consists in the joint applicatminthe proposed procedure and MCS
according to Eq. (18).

6 CONCLUSIONS

A method for evaluating the probability density étion and characteristic function of the
response of linear and non-linear systems drivenabstable sub-Gaussian processes has
been presented. The main idea is that the sub-@Gausgut may be viewed as a conditional
Gaussian process, namely as a Gaussian procesaurftterlying one) having random
amplitude (the square root of arv/ 2 -stable random variable). So operating, the steisif
the system response to the sub-Gaussian inputecabtained from those of the response to
the conditional Gaussian process simply perforneangemble averages with respect to the
random amplitude. It has also been shown thatenlittear case the characteristic function
can be determined in closed-form since the resp@rseess is a sub-Gaussian one.
According to the present procedure, the probalulicharacterization of the responsede
stable sub-Gaussian input actually exhibits theesdifficulties as in the case in which the
relevant system is driven by a Gaussian procedslidiws that the main tools of classical
random vibration theory can be still exploited whbka input process is a sub-Gaussian one.
In particular, if the underlying Gaussian procesa white noise, one may take full advantage
of the 1t6 stochastic differential calculus.

The accuracy of the proposed approach has beessagst#hrough numerical applications
concerning both linear and non-linear one-dimeraisgstems under sub-Gaussian input. In
the linear case the estimates of the responsestgtatihave been shown to be in good
agreement with the exact solutions. On the othadhappropriate comparisons with Monte
Carlo simulation results have demonstrated theceffeness of the present procedure even
when system nonlinearities are involved.
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APPENDIX — Multi-degree-of-freedom (MDOF) systems ader sub-Gaussian input

In this Appendix, the formulation presented in pregper for one-dimensional systems is
properly extended to the case of multi-degree-e¢dom (MDOF) systems.
Let the equations of motion of @-DOF system driven by a sub-Gaussian input be given
in the following form:
Y () = (Y (),)+ A'G (1),

Y(O)=Y,, (A1)

where Y(t)=[Y1(t), Y, (9, ..., X(I)]T; f(Y (t),t) is a n-vector listing arbitrary linear or
non-linear functions ofY(t) and t; G(t) is a vector of ordem collecting zero mean
Gaussian processes with assigned autocorrelationxma& denotes arw/ 2 -stable random
variable totally skewed to the righa( S, ,((cosrmr /4§ ,1,0) and independent oB(t);

Y, is the n-vector of initial conditions, here supposed toabeero mean random vector with

given covariance matrix, independent®ft).

In analogy with the one-dimensional case, the fidistic characterization of the vector
processY (t) is performed through two successive steps. Tedtep consists in finding the

response statistics of the following system:
S\ —f 0 1 .
YO =Y .0+ O (A2)
Y(0)=Y,,

wherea >0 is a real parameter representing the genericzegadn of the random variablé
and \?O is supposed to be a zero mean Gaussian randoor vétit given covariance matrix.

In the case in whicH (\? (t),t) is a vector collecting linear functions, the resa® vector
\?(t) is a zero mean Gaussian one whose uncondition& &l CF, p,(y;at) and
@ (3;a,1), are known in explicit form as follows:

Py (y:a )= : exp{-EyTz? @ )/} : (A.3)
J@r) (Det(z, (a H))"2 2

@ (B a,1)= exp{—%STZ? (a;t)‘)} , (A.4)
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being Z, (a;t) = E[\?(t)\?T(t)] the covariance matrix o‘f’(t). The joint PDF and CF of’(t)
at two different time instants andt, are given, respectively, by:

1 1y, ! -1 Y1
AY 11 2; ) 1t2 = ) R?\? ’ ’t2 | A5
Pig,YYaid L) J(@n) (DetRy; (a1, 1) exp{ Z(YJ 0. &% {yzj} )

@y (8,958 t,t,)= exp{_%(?] Ry @ 4 {glJ} | A6

whereY, =Y (t), y, =y(t), (i =1,2), and Ry (at,1,) is defined as:

R,y (34,1 ={E[Y1Y1T I avydl } (A7)

E[Y,Y]] HYY]]
In view of the linearity of the systenZ; (a;t) and R, (a;t,t,) can be evaluated by means

of the following relationships:
. (at) =az, (b); R;(lyz (at )= GR\?NZ (L, t) (A.8)

where Y (t) denotes the solution of Eq. (A.2) far=1 (\?(t) =f (Y (t),1) +G (t)).

Taking into account that the sub-Gaussian inptitG(t) may be viewed as a conditional
Gaussian vector process, the unconditional PDFCGindf Y (t) can be obtained performing
ensemble average g, (y; At) and g (8; At), respectively:

piD=Elp(y; Adl=] p(3 p(y; axd a
0 (A.9a,b)

@ (@) =El@ (8 Al = p(34(% a)da

being p,(a) the PDF of the random variabl&. In a similar way, the joint PDF and CF of
Y(t) attwo different time instants andt, can be evaluated as follows:

Pr, V0¥t ) = ElR, (VoY 5 AL B)]= [ B(3 Ry (.5 at da
0 (A.10a,b)

B, (91,9,t,,) = El@, (9,9 At,1)]=[ p(dg, (9,9 ;at,t)da
0
It has to be mentioned that the probabilistic dptmrs above defined can be obtained in

closed-form taking into account that since the eaysis linear, the following relationship
holds:

Y (t) = AY3Y (1). (A.11)
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According to Eg. (A.11), the response vectt) is sub-Gaussian with underlying Gaussian
vector processY (t), so that its unconditional and joint CFs are gjvaspectively, by (see
Eq. (6)):

@ @t) = exp{— %1’?2Y t)o ' } ; (A.12)

al2

(A.13)

1(9,) 9
@1Y2(81182;t11t2)=ex _‘E ’92} R\?l\?z¢112 {si]

In the case of MDOF non-linear systems under sults8an input, the statistics of the
response can be still evaluated by means of Eg9) @nd (A.10), while Eqgs. (A.12) and
(A.13) do not apply since the response vec¥t) is no longer a sub-Gaussian one.

Unfortunately, the use of Egs. (A.9) and (A.10h@ so straightforward as in the linear case,
because closed-form solutions in terms of resp®&¥e or CF for MDOF non-linear systems

subject to the Gaussian inpa’G(t) are very rare. In this regard, it is worth menitignthat

exact solutions are available for the stationarypomse PDF of some MDOF non-linear
systems driven by external and/or parametric Gansshite noise excitation&’. In any case,
if the underlying Gaussian vector procds§t) in Eq. (A.1) collects Gaussian white noises,

l.e. G(t) =W,(t), the powerful tools of the Itd stochastic diffeiahcalculus can be used to
obtain the statistics of the response vectdt) to the inputa”?W,(t) (see Eq. (A.2)), as
required by the proposed approach. Specificallg, RIDF, p; (y;a t), can be evaluated as
approximate or exact solution (if it does exist}teg FPK equation:

op, (y; a 1) a
— 5 = O 6.Dp ¢ian)+S 0,5 (R 6ia O (A.14)
where O) =[a/dy,, 0/dy,, ..., 8/dy]; the exponent into square brackets means

Kronecker powéf>% q is an® - vector whose elements are the strengths of theewddiises
W,; (1) . On the other hand, the CB (3;a,t), is ruled by the following partial differential
equation:

g (9;a,t)

s i97 Fexp(i9TY)f (Y ,t)] ‘%4‘% (9:a,1)8197. (A.15)

If the | -th element of the drift vectdr(\?,t) is a polynomial of the type:
f,(Y,1)= ;c}k\?[kl (A.16)

then, recalling that the following relationship:
E[YWexp(i9"Y )] = (-i) Ty (@ (9; 1)) (A.17)

holds, Eqg. (A.15) may be rewritten in terms of thegknown CFg (3;a,t) and its partial
derivatives.
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