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Abstract. The paper deals with the analysis of linear and non-linear systems under a special class of symmetric 
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-stable stochastic processes, namely sub-Gaussian excitations. Such processes are defined multiplying the square root of an 
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-stable random variable totally skewed to the right by a zero mean normal process with assigned autocorrelation function. Relying on the observation that the sub-Gaussian input may be viewed as a Gaussian process with random amplitude having 
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-stable distribution, it is shown that the characteristic function and the probability density function of the response can be obtained from those of the system subject to the underlying Gaussian process by performing simple integrals. It is also observed that linear systems are amenable to closed-form solutions in terms of characteristic function of the response. Appropriate comparisons with the exact solutions and Monte Carlo simulation results demonstrate the accuracy of the procedure in the linear and non-linear cases, respectively.

Sommario. Oggetto del presente lavoro è l’analisi di sistemi lineari e non-lineari soggetti a una particolare classe di processi aleatori simmetrici 
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-stabili, noti come processi sub-Gaussiani. Tali processi sono definiti moltiplicando la radice quadrata di una variabile aleatoria 
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-stabile totalmente deviata a destra per un processo aleatorio Gaussiano a media nulla di assegnata funzione di autocorrelazione. Osservando che una forzante sub-Gaussiana può essere considerata come un processo Gaussiano caratterizzato da un’ampiezza aleatoria avente distribuzione 
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-stabile, viene mostrato che la funzione caratteristica e la funzione densità di probabilità della risposta possono essere ottenute a partire da quelle del sistema soggetto al processo Gaussiano di base mediante il calcolo di integrali semplici. Si osserva, inoltre, che per sistemi lineari la funzione caratteristica della risposta può essere determinata in forma chiusa. L’accuratezza della procedura è dimostrata mediante opportuni confronti con le soluzioni esatte nel caso lineare e con i risultati della simulazione Monte Carlo nel caso di sistemi non-lineari.

1
INTRODUction

The Central Limit Theorem (CLT) justifies the extensive use of Gaussian processes for modeling a wide class of physical phenomena. Well-established techniques for the analysis of linear and non-linear systems under Gaussian input may be found in classical textbooks on random vibration theory1-5. In this context, a central role is played by the Gaussian white noise process, formal derivative of the so-called Wiener process. Indeed, the special features of the Wiener process enable to perform the probabilistic characterization of the response to Gaussian white noise input by using the powerful tools of Itô stochastic differential calculus6. However, many real phenomena observed in physics, seismology, electrical engineering, economics, etc., are non-Gaussian in nature, as they belong to a heavy-tailed distribution class or have impulsive nature. The necessity of non-Gaussian models for describing the large fluctuations exhibited by such phenomena have raised an increasing interest in the so-called 
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-stable Lévy processes7. Such processes are characterized by four parameters: the stability index 
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 yields a rich variety of 
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-stable Lévy noises, which may be adequately used to model various phenomena such as income distributions in economics, seismic ground acceleration in earthquake engineering, gravitational forces acting on stars, etc. The Gaussian white noise is a special case of the 
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-stable Lévy white noise for 
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. The response of linear and non-linear systems driven by 
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-stable Lévy white noises has been widely investigated in the literature8-23 working either in terms of Probability Density Function (PDF), ruled by the Einstein-Smoluchowsky (ES) equation16,17, or of Characteristic Function (CF). Grigoriu11 obtained closed-form solutions for the CF and the mean up-crossing rate of the response of linear systems to 
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-stable processes based on the integral and series representation of the input process. Non-linear systems have been handled by different approaches such as digital simulation10,12,14, path integral method12, equivalent linearization technique17 and wavelet expansion23. Closed-form expressions of the PDF or CF can be found only in the stationary case for some scalar systems with polynomial nonlinearities18,19.

This paper is devoted to the analysis of linear and non-linear systems under a special class of symmetric 
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-stable processes, namely sub-Gaussian excitations. Such processes are defined as the product of a zero mean Gaussian process 
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-stable random variable (
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, totally skewed to the right (
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 is also called subordinate to the underlying Gaussian process 
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. In the linear case, closed-form solutions in terms of CF can be easily obtained by taking into account that the response process to the above defined input is sub-Gaussian too. The procedure presented in the paper relies on the observation that the subordinate input 
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 may be viewed as a conditional Gaussian process, namely as a Gaussian process with random amplitude having 
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-stable distribution. Specifically, it is shown that the probabilistic characterization of the response of dynamic systems under sub-Gaussian input can be performed starting from the response statistics of the system subject to the underlying Gaussian process. In this regard, it has to be mentioned that, while closed-form solutions are always available for the PDF and CF of the response of linear systems under Gaussian input, in the non-linear case the evaluation of response statistics is not an easy task. Nevertheless, if the underlying Gaussian process is a white noise, the PDF is known in explicit form for some special classes of non-linear systems5,26-28. In the other cases, approximate solutions of the partial differential equation ruling the PDF (Fokker-Planck-Kolmogorov equation) or the CF can be obtained by any of the procedures developed in the literature.

Some numerical results concerning the response PDF and CF of one-dimensional linear and non-linear systems under 
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-stable sub-Gaussian input for various values of the stability index are presented in the paper. The accuracy of the proposed procedure is demonstrated through appropriate comparisons with the exact solution and Monte Carlo simulation (MCS) data in the linear and non-linear cases, respectively.

2
(-STABLE random VARiables and processes 

In this section, some basic concepts concerning 
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-stable random variables and processes are briefly summarized for clarity’s sake as well as for introducing appropriate notations. The readers interested in this topic are referred among others to Samorodnitsky and Taqqu7.
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where 
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 are four parameters commonly referred to as stability index (or characteristic exponent), scale parameter (or dispersion), skewness (or asymmetry) and shift (or location), respectively. The index of stability 
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 describes the tails of the probability density, the parameters 
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 govern, respectively, the spread and skewness of the distribution around its center which is defined by the shift 
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 with respect to the origin. Random variables having a CF as in Eq. (2) are also called 
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-stable random variables exist and are continuous, but they are not always known in a simple explicit form. In fact, the Inverse Fourier Transform of the CF in Eq. (2) can be performed analytically only in few special cases: the Gaussian distribution 
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The striking feature of 
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-stable random variables is that their Probability Density Function (PDF) has inverse power tails, which implies that the tails decay more slowly than those of Gaussian distributions. Specifically, the rate of decay depends on the characteristic exponent 
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 heavier the tails. As a consequence, the variance and higher order statistical moments of 
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Of course, when 
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where 
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In the next sections, the probabilistic characterization of the response of scalar systems subject to 
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-stable excitations will be addressed. In particular, an effective approach for evaluating the response PDF and CF in the special case of sub-Gaussian input will be presented. The extension to multi-degree-of-freedom (MDOF) systems is reported in the Appendix.
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where 
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where a dot over a variable denotes time derivative; 
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where the symbol 
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where 
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which is often called spectral ES equation.

As shown by Di Paola and Failla23, Eq. (13) GOTOBUTTON ZEqnNum383808  \* MERGEFORMAT 
 can also be built by applying the rules of stochastic differential calculus, thus allowing a straightforward generalization to MDOF systems. Exact solutions of the spectral ES equation have been obtained for some scalar systems with polynomial nonlinearities, only in the stationary case18,19 (
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, in general, should be solved numerically with high computational costs. Recently, an approximate solution procedure based on the joint use of wavelet representation and weighted residual method has been proposed23.
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(-stable sub-gaussian excitation
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where, according to the notation introduced in Section 2, 
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The above problem is here tackled observing that Eq. (14) GOTOBUTTON ZEqnNum935066  \* MERGEFORMAT 
 may be regarded as the equation of motion of a scalar system driven by a zero mean Gaussian process 
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which is obtained from Eq. (14) GOTOBUTTON ZEqnNum579811  \* MERGEFORMAT 
 replacing the random variable 
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 with its generic realization 
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The second step of the present procedure consists in the probabilistic characterization of the response process 
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In a similar way, the joint PDF and CF at two different time instants 
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As regards the second step of the above described procedure, it is worth noting that the evaluation of the integrals in Eq. (16 GOTOBUTTON ZEqnNum645715  \* MERGEFORMAT 
) (or Eq. (17 GOTOBUTTON ZEqnNum434032  \* MERGEFORMAT 
)) may be quite involved. In fact, the PDF of the 
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being 
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It is noted that the presented procedure allows to reduce the analysis of a system under sub-Gaussian input to the one of the same system subject to the underlying Gaussian process. In this respect, the probabilistic characterization of the response to 
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-stable Lèvy white noise, discussed in Section 3, turns out to be much more difficult since it requires the solution of the ES equation or of its spectral counterpart.

In the sequel, the application of the proposed approach will be described in detail considering separately linear and non-linear systems.

4.1
First-order linear systems under sub-Gaussian input

The simple case of a linear half oscillator under sub-Gaussian input is first treated: 
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The statistics of the response process 
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 is linear, the following relationship holds:
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where 
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Alternatively, the same result may be obtained by applying the proposed procedure. For this purpose, first the statistical properties of the response process 
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 to the Gaussian excitation 
[image: image237.wmf]1/2

()

aGt

 (Eq. (15) GOTOBUTTON ZEqnNum970443  \* MERGEFORMAT 
) have to be evaluated. For simplicity’s sake, the initial condition 
[image: image238.wmf]0

ˆ

Y

 is supposed to be a zero mean Gaussian random variable, so that the response 
[image: image239.wmf]ˆ

()

Yt

 is a zero mean Gaussian process, whose complete probabilistic characterization is ensured by the knowledge of the autocorrelation function 
[image: image240.wmf]ˆ

(,)

jk

Y

Rtt

. In view of the linearity of the system, 
[image: image241.wmf]ˆ

(,)

jk

Y

Rtt

 may be simply obtained by first evaluating the autocorrelation function 
[image: image242.wmf](,)

jk

Y

Rtt

%

 of the response process 
[image: image243.wmf]()

Yt

%

 to the underlying Gaussian input 
[image: image244.wmf]()

Gt

, say for 
[image: image245.wmf]1

a

=

, and then applying the following relationship:


[image: image246.wmf]ˆ

(,)(,).

jkjk

Y

Y

RttaRtt

=

%


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (23)

The procedure for deriving the autocorrelation function of the random process 
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 can be found in classical textbooks on random vibration theory2.

According to Eq. (23) GOTOBUTTON ZEqnNum585574  \* MERGEFORMAT 
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Notice that both the PDF and the CF of 
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 may be regarded as functions of a random parameter since they depend on the generic realization of the random variable 
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.

Then, following the proposed approach, the unconditional (or joint) PDF and CF of 
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 may be obtained simply by evaluating the integrals in Eq. (16 GOTOBUTTON ZEqnNum645715  \* MERGEFORMAT 
) (or Eq. (17 GOTOBUTTON ZEqnNum434032  \* MERGEFORMAT 
)). 

Summarizing, the presented procedure for the probabilistic characterization of the response of a linear system driven by a sub-Gaussian process 
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ii) to evaluate the unconditional (or joint) PDF and CF of the Gaussian response process 
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) (or Eq. (25 GOTOBUTTON ZEqnNum823826  \* MERGEFORMAT 
));

iii) to perform ensemble average of 
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)). 

4.2
First-order non-linear systems under sub-Gaussian input 

Let us now consider the general case in which 
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 is an arbitrary non-linear function.

Since the system is non-linear, Eq. (20) GOTOBUTTON ZEqnNum288032  \* MERGEFORMAT 
 does not apply and, in general, closed-form solutions in terms of PDF or CF cannot be derived. The proposed approach first requires to evaluate the statistics of the random process 
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In order to clarify the concepts stated above, let us assume that the underlying Gaussian process 
[image: image286.wmf]()

Gt

 is a zero mean normal white noise, i.e. 
[image: image287.wmf]0

()()

GtWt

º

, fully characterized by the autocorrelation function:


[image: image288.wmf]0

12010212

(,)[()()]()

W

RttEWtWtqtt

d

==-


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (27)

where 
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iii) for 
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By virtue of property i), the main tools of the Itô stochastic differential calculus can be used for analyzing the response of non-linear systems driven by sub-Gaussian white noises. In particular, since the increments of the subordinate Wiener process 
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Then, replacing the random variable 
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 with its generic realization 
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Notice that in Eq. (29) GOTOBUTTON ZEqnNum745155  \* MERGEFORMAT 
 the input is represented by an increment of the sub-Gaussian Wiener process 
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 the system is subject to an increment of the Wiener process 
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Alternatively, 
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 may be characterized evaluating the CF, 
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which can be obtained simply by making the Fourier Transform of the FPK equation (31) GOTOBUTTON ZEqnNum629724  \* MERGEFORMAT 
. If 
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the equation ruling the CF takes the form:
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Both Eqs. (31) GOTOBUTTON ZEqnNum269569  \* MERGEFORMAT 
 and (32) GOTOBUTTON ZEqnNum486990  \* MERGEFORMAT 
 (or (34) GOTOBUTTON ZEqnNum108451  \* MERGEFORMAT 
) should be supplemented by the appropriate boundary and initial conditions.

Unfortunately, the analytical solution of the previous partial differential equations presents severe difficulties, so that several approximate techniques have been developed in the literature. Nevertheless, closed-form stationary solutions of the FPK equation (31) GOTOBUTTON ZEqnNum658555  \* MERGEFORMAT 
 can be obtained for some special non-linear systems belonging to the class of generalized stationary potential5,26-28. For such systems the proposed approach still represents an accurate and efficient tool since the stationary PDF of the response under sub-Gaussian input can be easily obtained by means of Eq. (16 GOTOBUTTON ZEqnNum645715  \* MERGEFORMAT 
a), once the exact stationary PDF of the response to the underlying Gaussian process multiplied by 
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 is known.

5
numericAL APPLICATIONS

5.1
Stationary response of a linear half oscillator under sub-Gaussian input 

As first example let us consider the one-dimensional linear system under sub-Gaussian input ruled by Eq. (19) GOTOBUTTON ZEqnNum250317  \* MERGEFORMAT 
, here rewritten for clarity’s sake:
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Let 
[image: image348.wmf]()

Gt

 be a zero mean stationary Gaussian process fully characterized by the following autocorrelation function, 
[image: image349.wmf]()

G

R

t

:


[image: image350.wmf](

)

2

()exp; 0.

GG

R

tsntn

=->


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (36)

If the motion starts at 
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Then, the exact CF of the stationary response 
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In order to apply the procedure presented in the paper, first the statistics of 
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The analysis has been carried out for different values of the stability index 
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Figure 1: Stationary CF of the response of the linear half oscillator in Eq. (35) for different values of 
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: exact solution (Eq. (21)) coincident with the proposed one (Eq. (16b)), (continuous line); proposed solution computed by MCS (Eq. (18b)), (dashed line); classical MCS (symbols).
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Figure 2: Stationary PDF of the response of the linear half oscillator in Eq. (35) for different values of 
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: exact solution (Inverse Fourier Transform of Eq. (21)) coincident with the proposed one (Eq. (16a)), (continuous line); proposed solution computed by MCS (Eq. (18a)), (dashed line); classical MCS (symbols).

As shown in Figs. 1 and 2, the results obtained through the numerical evaluation of the integrals in Eq. (16 GOTOBUTTON ZEqnNum645715  \* MERGEFORMAT 
) obviously coincide with the exact solutions, but to retrieve the PDF 
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Figure 3: Stationary joint CF of the response of the linear half oscillator in Eq. (35) for different values of 
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: exact solution (Eq. (22)) coincident with the proposed one (Eq. (17b)), (continuous line); proposed solution computed by MCS (dashed line); classical MCS (symbols).

Figure 3 displays the stationary joint CF of 
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[image: image402.wmf]10000

N

=

 samples) following the procedure outlined above for the unconditional PDF and CF. It can be observed that the results obtained by the present approach are in good agreement with the exact solution and classical MCS data. In particular, when the integral in Eq. (17 GOTOBUTTON ZEqnNum434032  \* MERGEFORMAT 
b) is computed numerically, by preliminarily evaluating the PDF of the random variable 
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The results discussed above state that the probabilistic characterization of the response of linear systems under sub-Gaussian input may be pursued following four different ways: 1) exact solution (Eqs. (21) GOTOBUTTON ZEqnNum917805  \* MERGEFORMAT 
, (22) GOTOBUTTON ZEqnNum644845  \* MERGEFORMAT 
 and corresponding Inverse Fourier Transforms to obtain the unconditional and joint PDF, respectively); 2) proposed method based on the numerical evaluation of the integrals in Eqs. (16 GOTOBUTTON ZEqnNum645715  \* MERGEFORMAT 
) and (17 GOTOBUTTON ZEqnNum434032  \* MERGEFORMAT 
); 3) proposed approach associated with MCS (see Eq. (18 GOTOBUTTON ZEqnNum343724  \* MERGEFORMAT 
)); 4) classical MCS.

5.2
Stationary response of a non-linear half oscillator driven by a sub-Gaussian white noise 

The second example concerns the probabilistic characterization of the response of the following non-linear system:
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where 
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being 
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where 
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Figure 4 shows the stationary response PDF, 
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Figure 4: Stationary PDF of the response of the non-linear half oscillator in Eq. (38) for different values of 
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: proposed solution (Eq. (16a)), (continuous line); proposed solution computed by MCS (Eq. (18a)), (dashed line); classical MCS (symbols).

It has to be emphasized that classical MCS is much more onerous than the present procedure even in the case in which the stochastic averages in Eqs. (16 GOTOBUTTON ZEqnNum645715  \* MERGEFORMAT 
) and (17 GOTOBUTTON ZEqnNum434032  \* MERGEFORMAT 
) are computed resorting to digital simulation. In fact, the application of classical MCS involves the following steps: i) simulate a sample, 
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. It follows that in the non-linear case, since no exact solutions are available, the most efficient way to perform the probabilistic characterization of the response to sub-Gaussian input, among those herein examined, consists in the joint application of the proposed procedure and MCS according to Eq. (18 GOTOBUTTON ZEqnNum343724  \* MERGEFORMAT 
).

6
conclusionS

A method for evaluating the probability density function and characteristic function of the response of linear and non-linear systems driven by 
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-stable sub-Gaussian processes has been presented. The main idea is that the sub-Gaussian input may be viewed as a conditional Gaussian process, namely as a Gaussian process (the underlying one) having random amplitude (the square root of an 
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-stable random variable). So operating, the statistics of the system response to the sub-Gaussian input can be obtained from those of the response to the conditional Gaussian process simply performing ensemble averages with respect to the random amplitude. It has also been shown that in the linear case the characteristic function can be determined in closed-form since the response process is a sub-Gaussian one. According to the present procedure, the probabilistic characterization of the response to 
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-stable sub-Gaussian input actually exhibits the same difficulties as in the case in which the relevant system is driven by a Gaussian process. It follows that the main tools of classical random vibration theory can be still exploited when the input process is a sub-Gaussian one. In particular, if the underlying Gaussian process is a white noise, one may take full advantage of the Itô stochastic differential calculus.

The accuracy of the proposed approach has been assessed through numerical applications concerning both linear and non-linear one-dimensional systems under sub-Gaussian input. In the linear case the estimates of the response statistics have been shown to be in good agreement with the exact solutions. On the other hand, appropriate comparisons with Monte Carlo simulation results have demonstrated the effectiveness of the present procedure even when system nonlinearities are involved.
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APPENDIX – Multi-degree-of-freedom (MDOF) systems under sub-Gaussian input 

In this Appendix, the formulation presented in the paper for one-dimensional systems is properly extended to the case of multi-degree-of-freedom (MDOF) systems.

Let the equations of motion of a 
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-DOF system driven by a sub-Gaussian input be given in the following form:
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In analogy with the one-dimensional case, the probabilistic characterization of the vector process 
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 is performed through two successive steps. The first step consists in finding the response statistics of the following system:
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 is a real parameter representing the generic realization of the random variable 
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In the case in which 
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In view of the linearity of the system, 
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where 
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being 
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It has to be mentioned that the probabilistic descriptors above defined can be obtained in closed-form taking into account that since the system is linear, the following relationship holds:
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According to Eq. (A.11), the response vector 
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In the case of MDOF non-linear systems under sub-Gaussian input, the statistics of the response can be still evaluated by means of Eqs. (A.9) and (A.10), while Eqs. (A.12) and (A.13) do not apply since the response vector 
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where 
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If the 
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-th element of the drift vector 
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then, recalling that the following relationship:
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holds, Eq. (A.15) may be rewritten in terms of the unknown CF 
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 and its partial derivatives.
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