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Abstract. The paper deals with the optimal design of a base isolation system for a given 
structure subjected to seismic loads. In particular, an appropriate minimum displacement 
seismic protection device optimal design formulation is proposed for an assigned elastic 
perfectly plastic steel frame constrained to behave in conditions of elastic shakedown. The 
chosen base isolation device is constituted by elastomeric isolators. Suitable combinations of 
fixed and seismic loads are considered. According to the unrestricted dynamic shakedown 
theory, the seismic input is given as any load history appertaining to a suitably defined 
seismic load admissibility domain. The relevant dynamic structural response is obtained by 
means of a modal analysis making reference to the non-classically damped structural model. 
A numerical application concludes the paper. 

Sommario. Il lavoro concerne il progetto ottimale di un sistema di isolamento da disporre 
alla base di una struttura nota soggetta ad azioni sismiche. In particolare, viene presentato il 
progetto ottimale di minimo spostamento del sistema di isolamento per un telaio in acciaio di 
geometria nota con comportamento elastico-perfettamente plastico imponendo una 
condizione di adattamento elastico. Il sistema di isolamento prescelto è costituito da isolatori 
elastomerici. Nel lavoro vengono considerate appropriate combinazioni di carichi fissi e 
ciclici. In accordo con la teoria dell'unrestricted dynamic shakedown, l’azione sismica è 
descritta come una storia di carico appartenente ad un dominio di ammissibilità 
opportunamente definito. La risposta dinamica è ottenuta attraverso l’analisi modale per 
strutture non classicamente smorzate. Il lavoro si conclude con una applicazione numerica. 

1 INTRODUCTION 

In last decades an ever increasing attention has been paid to seismic actions causing the worst 
effects either on civil or manufacturing or infrastructure structures. Therefore, the safeguard 
of such structures is the first goal to be achieved in the structural engineering framework. Two 
main objectives belong to this framework: the first one is to avoid the partial or global 
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collapse with the corresponding human, social and economic outcomes; the second one, 
mainly devoted to high cardinal structures (such as hospitals, schools and so forth), requires a 
minimal structural efficiency both during and after the earthquake. In order to achieve the last 
objective it is required to design the structure in such a way that its response under the 
expected seismic event guarantees its usability. For elastic plastic structures the latter 
requirement can be obtained if the structural design imposes an elastic shakedown behaviour 
under the expected seismic actions. Clearly, a new structure can be easily designed to possess 
such behaviour, but usually resulting in an over-dimensioning with respect to the 
serviceability loading conditions. From the other hand the designer will face higher 
difficulties in upgrading an existing structure. In the latter case the more convenient strategy 
seems to be the adopting of appropriate seismic protection devices. Two main strategies are 
available: the first one is that of stiffening the structure by introducing suitably disposed cross 
bracing elements; the second one is that of reducing the amount of seismic energy coming out 
from the ground to the overhanging structure. In the first strategy the structure floor drifts are 
reduced as well as the stresses on the beams and pillars (see, e.g. [1]). The second strategy is 
regarded as very effective and mainly consists in inserting suitable devices (base isolation 
systems) between the soil foundations and the structure able to increase the first natural period 
of the isolated system making the structure less sensitive to seismic actions. 
This effect can be obtained alternatively adopting a passive control, an active control or a 
semi-active control. In passive control devices the mechanical characteristics do not change 
depending on those of the seismic action, while in active control ones it is possible (see, e.g., 
[2-4]). To author’s knowledge, the base isolation system based on passive devices is one of 
the most efficient and economic technique. Recent approaches devoted to the design of 
passive devices take into account for the randomness of the seismic actions (see, e.g., [5]). 
The optimal design of a base isolation system can be formulated in different ways [3-6]. As an 
example, the isolating device can be designed searching for the minimum drift of a chosen 
structure floor within an admissible range for the protecting device stiffness, or searching for 
the minimum base isolation system displacement according to fixed maximum structural 
drifts. Aim of the present paper is the formulation of an appropriate minimum displacement 
protection device design problem for an assigned structure constrained to elastically 
shakedown. 
In the present case, the seismic loads are unknown; further, the shakedown theory is related to 
the structural analysis under cyclic or repeated loads belonging to an admissible domain. To 
this aim in the paper reference is made to the so-called unrestricted shakedown theory [7]. 
According to such theory an appropriate seismic load domain is generated through the 
definition of a suitable number of dynamic basic load conditions. The relevant dynamic 
structural response is obtained by means of a modal analysis making reference to the non-
classically damped structural model being the relevant structure provided by a base isolation 
system. An example related to a six floor plane steel frame concludes the paper. 

2 2 STRUCTURE AND LOADING MODEL DEFINITIONS 

Let us consider the plane frame plotted in Fig. 1a, constituted by Navier’s beam type 
elements provided with a base isolation system constituted by viscoelastic devices disposed 
under each pillar. The purely elastic behaviour of each isolation device under static loads is 
described by the relation 
 

 =iso iso iso
x, j j x, jF k u ,  1 2= isoj , ,...,n , (1) 
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with iso
x, jF , iso

jk , iso
x, ju  horizontal force, shear stiffness, horizontal displacement related to the 

- thj  device, ison  being the number of the relevant isolation devices. Therefore, the described 

devices totally prevent vertical displacements and rotations of the constrained cross section 
elements and they result elastically flexible with regard to the horizontal displacements (Fig. 
1b). 

 

a)       b) 
Figure 1: a) plane frame provided with a base isolation system; 

b) assumed elastic model for the base isolation devices. 
 

If no dynamic actions are present, the classical formulation of the static linear elastic 
analysis problem for plane frames constituted by bn  beam type elements, Nn  standard nodes 

(with three degrees of freedom) and ison  elastically flexible external nodes, is given as 

follows: 
 

 d C u= ,         Q Dd Q= + * ,          CQ F=%  (2a,b,c) 
 

where (Fig. 2) d , Q  and Q*  are the displacement, generalized stress and perfectly clamped 

generalized stress vectors of the beam element extremes of dimension 6⋅ bn , respectively, D  

is the frame internal (square block diagonal) stiffness matrix with order 6⋅ bn . 
 

 
Figure 2: Plane frame: displacement and force vector components and reference systems. 

 

Furthermore, u u u=% % %
iso

N  and F F F=% % %iso
N are frame nodal displacement and nodal 
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force vectors of dimension 3+ ⋅iso Nn n ; C  is the compatibility matrix with order 

( )6 3⋅ × + ⋅b iso Nn n n  and its transpose C%  is the related equilibrium matrix. The solution to 

problem (2) is given by: 
 

 1u K F−= *ˆ ,        1Q DCu Q DCK F Q−= + = +* * *ˆ  (3a,b) 
 

in terms of structure node displacements and element generalized stresses, respectively, with 

K̂  frame external square stiffness matrix of order ( )3+ ⋅iso Nn n  obtained by K CDC= %  with 

= + iso
jj jj jK̂ K k  for 1 2= isoj , ,...,n , and F F CQ= − %* *  equivalent nodal force vector. 

Making reference to seismic actions, let us consider the relevant frame provided by 
viscoelastic isolation devices, just subjected to an horizontal ground acceleration ( )ga t . The 

model to be used for the elastic dynamic analysis can be deduced by the frame model already 
utilized in eqs. (2-3). 
With this aim, at first, let us reorder the elements of vector u , i.e. 
 

 1u E u u u= = % %
T

d t r  (4) 

with 1E  appropriate reordering matrix, ut  horizontal displacement components and ur  

remaining displacement components, where the apex T denotes the transpose of the relevant 
quantity. Analogously, matrix K̂  must be reordered: 
 

 1 1

K K
K E KE

K K
= =% tt tr

d
rt rr

ˆ  (5) 

 

with trivial meanings of the utilized symbols and being 1 1E E I=% , with I  identity matrix. 

Furthermore, in order to describe the classical frame model, the equality of the horizontal 
displacements at the same floor must be imposed, i.e. 
 

 2u E s=t  (6) 
 

where 2E  is an appropriate condensation matrix of order ( )+ ×iso N fn n n , with fn  number of 

floors (including the base isolation floor), s s= %
T

b ss  is the (horizontal) displacement vector 

related to the frame floors (dynamic degrees of freedom), with bs  base isolation displacement 

and ss  structural floor displacement vector with respect to the base isolation level. 

Finally, it is usual to model the isolated structure as the superimposition of a classical ( )1−fn  

floors clamped frame over the base isolation level as represented in Fig. 3. On the ground of 
such representation the dynamic equilibrium equations can be written in the following form: 
 

 

( )
( )
( )

( )
( )
( )

( )
( )
( )

( )
τ M

M τ M s A s K K s M τ

u u K K u

+ + = −
0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

% % % % %% && &

&& &

&& &

tot s s b b b b b tot

s s s s s s s sr s s s g

r r rs rr r

m s t a s t k s t m

t t t a t

t t t

 (7) 
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or, explicitly: 
 

 τ M s+ + + = −&&&& % &tot b s s s b b b b tot gm s a s k s m a (8a) 

 M τ M s A s K s K u M τ+ + + + = −&& &&&s s b s s s s s s sr r s s gs a  (8b) 

 K s K u+ = 0rs s rr r  (8c) 
 

where: 
( )1

1

−

=
= + ∑

fn

tot b i
i

m m m  is the total mass of the isolated structure, bm  being the mass of 

the base isolation level; Ms  is the mass matrix of the clamped frame; τs  is the influence 

vector of the over frame; ba  is the damping coefficient related to the base isolation device; 

1=
= ∑

ison
iso

b j
j

k k  is the total stiffness of the base isolation devices; As  is the damping matrix 

related to the clamped frame. The following relations hold: 
 

 ( ) ( )( )2 2 1 1
E K E

+ +
= %

tts i , j i , j
K , ( ) ( )( )2 1

E K
+

= %
trsr i , j i , j

K , K K= %
rs sr  (9a,b,c) 

 
Figure 3: Isolated frame structural model. 

 

Finally, ( )&bs t , ( )s&s t  and ( )&&bs t , ( )s&&s t  represent the velocity and the acceleration vectors of 

the base isolation system and of the over frame structure, respectively, the over dot meaning 
time derivative of the relevant quantity. From (8c) one obtains 
 

 1u K K s−= −r rr rs s  (10) 
 

and eqs. (8a,b) can be rewritten in the following compact form: 
 

 
( )
( )

( )
( ) ( )

( )
( ) ( )1

τ M

M τ M M τs s sA K K K K−+ + = −
−

00

0 0

%%% && &

&& &

btot s s totb b bb
g

s s s s ss s ss s sr rr rs

km ms t s t s ta
a t

t t t
(11) 
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It is worth noting that the base isolation system damping coefficient ba  can be computed once 

assigned the relevant isolation system damping ratio ζb  and once evaluated its stiffness: 
 

 ω = b
b

tot

k

m
;      2 ω ζ=b tot b ba m  (12a,b) 

 

with ωb  natural frequency related to the base isolation system. 

Furthermore, it must be observed that the mass, damping and stiffness matrices in equation 
(11) do not satisfy the Caughey-O’Kelly condition [8] namely, the relevant system is not a 
classically damped one. As a consequence, the elastodynamic analysis can be effected as 
synthetically described in the following. 
As known, eq. (11) can be reformulated in the following way: 
 

 
( )
( )

( )
( )

( )s s fKA M
s sMM

+ =
−

0

000

&

&& &

t t t

t t
 (13) 

 

where  
 

A
A

=
0

0

%
b

s

a
,

τ M
M

M τ M
=

%tot s s

s s s

m
, ( )1K

K K K K−=
−

0

0

%
b

s sr rr rs

k
, ( )f

M τ
= − tot

g
s s

m
t a (14a,b,c,d) 

 

The solution of the system (13) together with the corresponding initial conditions provides the 
structural response in terms of floor horizontal displacements and allows to determine (see, 
e.g. [9]) the natural frequencies and the damping ratios related to the non-classically damped 
system. Once these last are known the complete frame node displacement vector and the 
related element generalized stress vector due to the dynamic actions can be determined. 
In the present context, the interest is focused in the determination of the characteristic of the 
isolation device which guarantees the shakedown of the structure. Since the real seismic load 
history is not known, reference must be made to a suitably defined admissible load domain. 
The definition of such a domain is made referring to the unrestricted dynamic shakedown 
theory [7]. Following this theory the seismic acceleration ( )ga t  is expressed as the 

superposition of a discrete set of single-frequency wave components ( )ijψ τ : 

 

 ( ) ( ) ( )
4

1 1
0ξ ψ τ τ

= =
= ≤ ≤∑∑

fn

g ij ij
i j

a t , T ,        
4

1 1
0 1ξ ξ

= =
≥ =∑∑

fn

ij ij
i j

,  (15a,b) 

 

being T the duration of the seismic action, ξij  some arbitrary coefficients required to satisfy 

the admissibility conditions (15b) [10] and 
 

 ( ) ( ) ( )0
1

1 2 int 1 cos sin
2

ψ τ τ ω τ ω τ −   = − ⋅ − +      

j
ij i i

j
c E   1 2 3 4=j , , ,  (16) 

 

where 0c  is a parameter related to the maximum power of the seismic input and ( )τE  a 
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suitable defined envelope function [7]. In equation (16) the intensity of the - thi  single-
frequency wave component is related to the power spectral density, here modeled by the well-
known Kanai-Tajimi filter, of the considered earthquake corresponding to - thi  structural 
natural mode [7]. 
Finally, an appropriate elastic plastic model for the structure is adopted as shown in Fig. 4a. 
In particular, beams and columns are considered as purely elastic elements; at their extremes 
rigid perfectly plastic hinges are located, where the mechanical resistance limit is verified. 
The domain which describes the rigid perfectly plastic behaviour of the cited hinges can be 
represented just in terms of bending moments or it can take into account also the influence of 
the axial forces (as known, especially for steel frame structures constituted by quite slender 
elements, it is usual to neglect the shear force influence). In the first case, adopted in the 
present context and certainly reliable during the initial phase of structure dimensioning, the 
rigid perfectly plastic hinge dimensionless domain is constituted by a segment with extremes 

1+  and 1−  (Fig. 4b), being yM  the full plastic bending moment of the relevant cross section. 

 

a)               b) 
Figure 4: a) elastic plastic structural scheme; b) rigid plastic domain of the typical hinge. 

3 OPTIMAL DESIGN PROBLEM FORMULATION 

Let us make reference to the isolated elastic perfectly plastic frame structure as above 
described and, according to the assumed loading model, let it be subjected to fixed 
mechanical loads and seismic loads. The minimum displacement base isolation system design 
problem formulation, with constraints on the elastic shakedown, can be written as follows: 
 

 
( )0 0

min
u s Y

 
s

b b k

b
s ,k , , ,

s  (17a) 

subjected to: 

 0 0Ku F ∗=ˆ  (17b) 

 0 0 0Q DCu Q∗= +  (17c) 

 
( )
( )

( )
( )

( )s s fKA M
s sMM

+ =
−

0

000

&

&& &

k k k

k k

t t t

t t
   ( )∀ ∈k I m  (17d) 

 ( ) ( ) ( )s s= %
T

k bk skt s t t    ( )∀ ∈k I m  (17e) 

 ( ) ( )2u E s=tk kt t    ( )∀ ∈k I m  (17f) 

 ( ) ( )1u K K s−= −rk rr rs skt t    ( )∀ ∈k I m  (17g) 

 ( ) ( ) ( )u u u= % %
T

dk tk rkt t t    ( )∀ ∈k I m  (17h) 
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 ( ) ( )1u E u= %S
k dkt t    ( )∀ ∈k I m  (17i) 

 ( ) ( )Q DCu= S S
k kt t  ( )∀ ∈k I m  (17j) 

 
( )

( )
0

max max
∈ ≤ ≤

=b bk
k I m t T

s s t  (17k) 

 
( )

( )
0

max maxQ Q+ ∈ ≤ ≤
=S S

k
k I m t T

t  (17ℓ) 

 
( )

( )
0

min minQ Q− ∈ ≤ ≤
=S S

k
k I m t T

t  (17m) 

 0 0 0φ G Q G Q SY Rξ ξ+ += + + − ≤ 0% %S S S S S
p p  (17n) 

 0 0 0φ G Q G Q SY Rξ ξ− −= − − − − ≤ 0% %S S S S S
p p  (17o) 

 0Y ≥ 0S  (17p) 
 

where, besides the already defined symbols, ( )uS
k t  and ( )QS

k t , ( )∈k I m  with m  number of 

basic load conditions, are the purely elastic response to the - thk  seismic action, φ+
S , φ−

S  are 

the plastic potential vectors related to the elastic shakedown limit, G% p  is an appropriate 

equilibrium matrix which applied to element nodal generalized stresses provides the bending 

moments acting upon the plastic nodes of the elements, 0 1ξ ≤S  and 1ξ ≥S  are scalar load 

multipliers suitable to define the chosen load combination, 1S DCG K G CD D−− = −% % %
p p

ˆ  is a 

time independent symmetric structural matrix which transforms the plastic activation 

intensities into the plastic potentials, 0Y S  are the fictitious plastic activation intensity vectors 

related to the elastic shakedown limit and R  is the relevant plastic resistance vector. The 
problem is solved by searching for the minimum base isolation system displacement within 
the admissible domain for base isolation stiffness, i.e. the domain characterizing the safe 
shakedown behaviour for the structure. 

4 NUMERICAL APPLICATIONS 

The minimum displacement design of the base isolation device for the steel frame in Fig. 5 
has been obtained referring to the previously proposed formulation. The design problem (17) 
has been solved utilizing a suitable MATLAB direct search subroutine. The frame is 
constituted by square box cross section elements with 250 mm=l  and constant thicknesses 
as listed in Table 1. Furthermore, the following geometrical and material characteristics have 
been assumed: 1 7 00 m=L . , 2 4 00 m=L . , 4 00 m=H . , Young modulus 210 GPa=E , yield 

stress 235 MPaσ =y . The rigid perfectly plastic hinges are located at the extremes of all 

elements and an additional hinge is located in the middle point of the longer beams. 
 

Table 1. Thicknesses (mm) of the frame. 
El. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
t 16 16 16 16 19 16 19 24 19 34 19 40 16 16 16 16 

El. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
t 16 16 16 19 23 29 36 40 16 16 16 16 18 30 16 16 
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The structure is subjected to a fixed uniformly distributed vertical load on the beams, 

0 40 kN m=q  and to seismic actions. The seismic masses are equal at each floor: 
235 88 kNs m=m . . The equivalent damping coefficient of the base isolation system has been 

assigned 0 10ζ =b . . In the case under examination the ground acceleration ga  has been 

characterized by the following Kanai-Tajimi parameters: 0 65ζ =g . , 19 rad sω =g  and 

0 0 0050=S . . The adopted load combinations are defined by an assigned fixed load 

multipliers 0 0 8ξ =S .  and to an imposed minimum seismic load multiplier 1ξ =S . The optimal 

base isolation displacement has been found 103mm=bs  related to a base isolation stiffness 

0 81kN mm=bk .  and to a shakedown load multiplier 4 88ξ =S . . It is worth noting (Fig. 6a,b) 

that the seismic load multiplier minimum value is reached for 3 78kN mm=bk .  and 

121mm=bs , but the searched displacement decreases till its minimum decreasing the base 

isolation stiffness, with a great safety margin with respect to the shakedown. 

 
Figure 5 – Frame under examination. 

5 CONCLUSIONS 

The present paper has been devoted to the optimal design of a base isolation system for a 
given structure subjected to seismic loads. In particular, an appropriate minimum 
displacement seismic protection device optimal design formulation is proposed for an 
assigned elastic perfectly plastic steel frame constrained to behave in conditions of elastic 
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shakedown. The overhanging structure has been assumed as a plane steel frame subjected to a 
suitable combinations of fixed and seismic loads and the selected isolation system is an 
elastomeric isolator. The main problem to be solved when facing the proposed design is that, 
in the case of real seismic actions, the load history is not known but a suitably defined 
admissible load domain is required in order to perform the shakedown behaviour design. In 
order to achieve this aim, in the paper reference has been made to the unrestricted dynamic 
shakedown theory. The dynamic structural response is obtained by means of a modal analysis 
making reference to the non-classically damped structural model. Some numerical 
applications conclude the paper. 
 

 a)         b) 
Figure 6: a) shakedown multiplier as function of the base isolation stiffness (♦ 1ξ =S ); 

b) base isolation displacement as function of the base isolation stiffness (■ 103mm=bs ). 
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