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Abstract. The paper deals with the optimal design of a hastation system for a given

structure subjected to seismic loads. In particulan appropriate minimum displacement
seismic protection device optimal design formulatis proposed for an assigned elastic
perfectly plastic steel frame constrained to behewveonditions of elastic shakedown. The
chosen base isolation device is constituted byt@taesric isolators. Suitable combinations of
fixed and seismic loads are considered. Accordmghe unrestricted dynamic shakedown
theory, the seismic input is given as any loadomystappertaining to a suitably defined

seismic load admissibility domain. The relevantaigit structural response is obtained by
means of a modal analysis making reference to tlmeechassically damped structural model.
A numerical application concludes the paper.

Sommario. Il lavoro concerne il progetto ottimale di un ®sta di isolamento da disporre
alla base di una struttura nota soggetta ad azgsmiche. In particolare, viene presentato il
progetto ottimale di minimo spostamento del sistéiriaolamento per un telaio in acciaio di
geometria nota con comportamento elastico-perfegtam plastico imponendo una
condizione di adattamento elastico. Il sistemasdlamento prescelto € costituito da isolatori
elastomerici. Nel lavoro vengono considerate appeip combinazioni di carichi fissi e
ciclici. In accordo con la teoria dell'unrestrictedynamic shakedown, I'azione sismica e
descritta come una storia di carico appartenente ad dominio di ammissibilita
opportunamente definito. La risposta dinamica érmita attraverso I'analisi modale per
strutture non classicamente smorzate. Il lavoroasiclude con una applicazione numerica.

1 INTRODUCTION

In last decades an ever increasing attention haxs paid to seismic actions causing the worst
effects either on civil or manufacturing or infrastture structures. Therefore, the safeguard
of such structures is the first goal to be achiendtie structural engineering framework. Two
main objectives belong to this framework: the ficste is to avoid the partial or global
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collapse with the corresponding human, social acah@mic outcomes; the second one,
mainly devoted to high cardinal structures (sucha@spitals, schools and so forth), requires a
minimal structural efficiency both during and aftee earthquake. In order to achieve the last
objective it is required to design the structuresuth a way that its response under the
expected seismic event guarantees its usability. éfastic plastic structures the latter
requirement can be obtained if the structural desigposes an elastic shakedown behaviour
under the expected seismic actions. Clearly, astavcture can be easily designed to possess
such behaviour, but usually resulting in an ovenehsioning with respect to the
serviceability loading conditions. From the otheantd the designer will face higher
difficulties in upgrading an existing structure.the latter case the more convenient strategy
seems to be the adopting of appropriate seismite@ion devices. Two main strategies are
available: the first one is that of stiffening tsteucture by introducing suitably disposed cross
bracing elements; the second one is that of rediutbi@ amount of seismic energy coming out
from the ground to the overhanging structure. knftrst strategy the structure floor drifts are
reduced as well as the stresses on the beams lind (8ee, e.g. [1]). The second strategy is
regarded as very effective and mainly consistangeiting suitable devices (base isolation
systems) between the soil foundations and thetsteiable to increase the first natural period
of the isolated system making the structure lessigee to seismic actions.

This effect can be obtained alternatively adoptingassive control, an active control or a
semi-active control. In passive control devices tiechanical characteristics do not change
depending on those of the seismic action, whiladtive control ones it is possible (see, e.qg.,
[2-4]). To author’'s knowledge, the base isolatigatem based on passive devices is one of
the most efficient and economic technique. Rec@mraaches devoted to the design of
passive devices take into account for the randosokthe seismic actions (see, e.g., [5]).

The optimal design of a base isolation system eafotmulated in different ways [3-6]. As an
example, the isolating device can be designed isegrdor the minimum drift of a chosen
structure floor within an admissible range for fivetecting device stiffness, or searching for
the minimum base isolation system displacement rdoog to fixed maximum structural
drifts. Aim of the present paper is the formulatminan appropriate minimum displacement
protection device design problem for an assignadctire constrained to elastically
shakedown.

In the present case, the seismic loads are unkniomther, the shakedown theory is related to
the structural analysis under cyclic or repeatedisobelonging to an admissible domain. To
this aim in the paper reference is made to theafleet unrestricted shakedown theory [7].
According to such theory an appropriate seismid lo@main is generated through the
definition of a suitable number of dynamic basiadoconditions. The relevant dynamic
structural response is obtained by means of a malysis making reference to the non-
classically damped structural model being the @éstructure provided by a base isolation
system. An example related to a six floor planeldtame concludes the paper.

2 2 STRUCTURE AND LOADING MODEL DEFINITIONS

Let us consider the plane frame plotted in Fig. dagstituted by Navier's beam type
elements provided with a base isolation systemtitated by viscoelastic devices disposed
under each pillar. The purely elastic behavioueath isolation device under static loads is
described by the relation

Ry =KMUT, 151200, 1)
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with FX'SJO, kijso, '30 horizontal force, shear stiffness, horizontal Hispment related to the

j -th device,n, belng the number of the relevant isolation devidé®refore, the described

devices totally prevent vertical displacements astdtions of the constrained cross section
elements and they result elastically flexible wigigard to the horizontal displacements (Fig.
1b).
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Figure 1: a) plane frame provided with a base tgmlesystem;
b) assumed elastic model for the base isolatioicdev

If no dynamic actions are present, the classicahiation of the static linear elastic
analysis problem for plane frames constitutednpybeam type elementsy, standard nodes

(with three degrees of freedom) amy, elastically flexible external nodes, is given as
follows:

d=Cu, Q=Dd+Q, CQ=F (2a,b,c)

where (Fig. 2)d, Q andQ are the displacement, generalized stress andctlgridamped
generalized stress vectors of the beam elemergrags of dimensio®h,, respectively,D
is the frame internal (square block diagonal) stffs matrix with orde6Lt, .
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Figure 2: Plane frame: displacement and force veximponents and reference systems.

Furthermore,ﬂ=‘0is° GN‘ and F =‘F~is° IfN‘are frame nodal displacement and nodal

Meccanica dei Materiali e delle Strutture | 4 (2014), 1, PP. 61-70 63



S. Benfratello, L. Palizzolo e P. Tabbuso

force vectors of dimensionn,,+ [By; C is the compatibility matrix with order

6, X (N, +3Cy) and its transpos€ is the related equilibrium matrix. The solution to
problem (2) is given by:

u=KF", Q=DCu+Q =DCK'F +Qg (3a,b)

in terms of structure node displacements and elegmmeralized stresses, respectively, with
K frame external square stiffness matrix of orfiey, +30hy) obtained byK =CDC with

Ky =K; +k* for j=12...1,, andF" =F -CQ equivalent nodal force vector.
Making reference to seismic actions, let us comsitie relevant frame provided by
viscoelastic isolation devices, just subjectedrtcharizontal ground acceleratiaay (t) The

model to be used for the elastic dynamic analysishe deduced by the frame model already
utilized in egs. (2-3).
With this aim, at first, let us reorder the elensewnit vectoru, i.e.

~ T
ug =Eu=|0, 0] (4)
with E, appropriate reordering matrixy, horizontal displacement components aund

remaining displacement components, where the apgenbtes the transpose of the relevant
guantity. Analogously, matriXX must be reordered:

o= Ktt Ktr
Ky = E,KE, = )
Krt KI’I’
with trivial meanings of the utilized symbols andirg E,E, =1, with | identity matrix.

Furthermore, in order to describe the classicah&amodel, the equality of the horizontal
displacements at the same floor must be imposed, i.

u, = E,s (6)

where E, is an appropriate condensation matrix of or@% + nN)x N, with n; number of

floors (including the base isolation roons),:|s0 §5|T is the (horizontal) displacement vector
related to the frame floors (dynamic degrees addioen), withs, base isolation displacement
and s, structural floor displacement vector with resgedhe base isolation level.

Finally, it is usual to model the isolated struetas the superimposition of a classi(m,l —1)

floors clamped frame over the base isolation l@getepresented in Fig. 3. On the ground of
such representation the dynamic equilibrium equatwan be written in the following form:

My M, 08(9 |a 0 0Ojs() |k O 0| My
M, Mg 0[3{t)+|0 A  0[s{t)+/0 K K s (t)=-Mzla ({) (7)
0 0l (t) [0 0 o (t) |0 Ke Killu(t) 0
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or, explicitly:
mot“% + ‘ESM §s+ ab.sb+ kb%: — My 9 (8a)
Mz S,tMSFtASHKS K Y 7~ M 7 4 (8b)
KSs+ K, u, =0 (8c)

(ne 1)

where: m,, = m,+ > m is the total mass of the isolated structurg, being the mass of
i=1

the base isolation levelM, is the mass matrix of the clamped framg; is the influence

vector of the over frameg, is the damping coefficient related to the baséatsm device;
Misp .

k, =2 ki is the total stiffness of the base isolation desjcA; is the damping matrix
=1

related to the clamped frame. The following relasitiold:

K :(EZKttEZ)(1+i,1+j)’ Ksii) =(ExK, )(1+i,j)’ Kis = Kar (%a.b.c)
m,
_'Sz(t)
m,
_’sl(t)

— a0 +5,)

O 0O 0O
Z 7
— ag(l )

Figure 3: Isolated frame structural model.

Finally, $,(t), &(t) and§ (t), &(t) represent the velocity and the acceleration veabr

the base isolation system and of the over frametsire, respectively, the over dot meaning
time derivative of the relevant quantity. From (8ag obtains

u. = _Kr;lKrs% (10)
and egs. (8a,b) can be rewritten in the followinghpact form:

" 5
0 (Ks_ Ker_rrlKrs)

5(9
5(t)

a, O
0 A

% (1)
5(t)

+

+ ay () (12)

Mot ‘ESM
MsTs M s
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It is worth noting that the base isolation systeamging coefficienta, can be computed once
assigned the relevant isolation system damping ggtiand once evaluated its stiffness:

@, = mﬁ; 8, = 2ol (12a.b)
ot

with ¢« natural frequency related to the base isolatitesy.

Furthermore, it must be observed that the masspit@nand stiffness matrices in equation
(11) do not satisfy the Caughey-O’Kelly conditioB] hamely, the relevant system is not a
classically damped one. As a consequence, theodiasimic analysis can be effected as
synthetically described in the following.

As known, eq. (11) can be reformulated in the fwiteg way:

A M s(t)+ Ko |s(t) _|f(t) (13)
M 0[5(t) [0 -M||s(t) | O
where
_ ol — 7 _ 0
A=fd Of gio|Ma EM4 o L E()=-| ™ |a (14a.b,c.d)
0 AS MSTS MS 0 (Ks_KerrrKrs) MSTS

The solution of the system (13) together with tbeesponding initial conditions provides the
structural response in terms of floor horizontapiiicements and allows to determine (see,
e.g. [9]) the natural frequencies and the dampatips related to the non-classically damped
system. Once these last are known the completeeframde displacement vector and the
related element generalized stress vector duestdythamic actions can be determined.

In the present context, the interest is focusetthéndetermination of the characteristic of the
isolation device which guarantees the shakedowtheo&tructure. Since the real seismic load
history is not known, reference must be made taildy defined admissible load domain.
The definition of such a domain is made referringthie unrestricted dynamic shakedown

theory [7]. Following this theory the seismic aegetion a,(t) is expressed as the
superposition of a discrete set of single-frequemaye componentg; (r) :

ag(t)=nzffajz/—/ij (r), (0s7<T), & =20, nszfu =1 (15a,b)

i=1j=1 i=1j=1

being T the duration of the seismic actigf), some arbitrary coefficients required to satisfy
the admissibility conditions (15b) [10] and

@, (r)={1— 2Eint(j7_1ﬂcoE(r)[(—])j cosyr + simr} j=1,234 (16)

where ¢, is a parameter related to the maximum power ofseiemic input ancE(r) a
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suitable defined envelope function [7]. In equatid®) the intensity of the -th single-
frequency wave component is related to the powectsp density, here modeled by the well-
known Kanai-Tajimi filter, of the considered eartiafe corresponding to-th structural
natural mode [7].

Finally, an appropriate elastic plastic model foe structure is adopted as shown in Fig. 4a.
In particular, beams and columns are considergqulesy elastic elements; at their extremes
rigid perfectly plastic hinges are located, whdre mechanical resistance limit is verified.
The domain which describes the rigid perfectly f¢abehaviour of the cited hinges can be
represented just in terms of bending moments catrittake into account also the influence of
the axial forces (as known, especially for steairfe structures constituted by quite slender
elements, it is usual to neglect the shear forfdlednce). In the first case, adopted in the
present context and certainly reliable during tméal phase of structure dimensioning, the
rigid perfectly plastic hinge dimensionless domigiconstituted by a segment with extremes
+1 and -1 (Fig. 4b), beingM, the full plastic bending moment of the relevamtssr section.

rigid perfectly plastic hinges concentrated mass

rigidnode 1T

’ _________ _Tl ---------

a) b)
Figure 4: a) elastic plastic structural schemeajdi)l plastic domain of the typical hinge.

elastic beam elements

3 OPTIMAL DESIGN PROBLEM FORMULATION

Let us make reference to the isolated elastic peyfeplastic frame structure as above
described and, according to the assumed loadingeindet it be subjected to fixed
mechanical loads and seismic loads. The minimuplatement base isolation system design
problem formulation, with constraints on the elastiakedown, can be written as follows:

mins, (17a)
(s % vo 5 Y5)
subjected to:

Ku, = F{ (17b)
Qo = DCu, +Qg (17c)
A MIs(t) K0 fIs(t) _ | fi(t)
‘M os<(t)+o —M‘sk(t)_ 0 Ok O 1 (m) (17d)
se(t)=[suc (1) 8] OO (m) (17¢)
Uy (t) = Exs(t) OkO1(m) (17f)
Uy (1) =K 'Ky (1) OkO1(m) (179)
Uge () =[Oy (t) Gge(t)] OkO1(m) (17h)
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uy (t) = Equg (t) OkO1(m) (17i)
QS (t)=DCug(t) OkO1(m) (17j)
S = Dora) S
S _ S
Q? = max maxd (t) (170)
S H H S
Q= min, minQc () (a7m)
9> =6G,Q+& G Q% SY,>R<0 (17n)
9> =-6G,Q,—¢ G,Q=-SY, ¥ R<0 (170)
Yy 20 (17p)

where, besides the already defined symbaft) and Q2 (t), kO'1(m) with m number of
basic load conditions, are the purely elastic raspdo thek -th seismic actionp?, ¢° are

the plastic potential vectors related to the etastiakedown Iimit,Gp is an appropriate
equilibrium matrix which applied to element nodaihgralized stresses provides the bending
moments acting upon the plastic nodes of the eIEme'ﬁ‘ <1 and £%>1 are scalar load

multipliers suitable to define the chosen load cimation, -S=DCG K 'G CD-D is a
time independent symmetric structural matrix whitlansforms the plastic activation
intensities into the plastic potentiahéoS are the fictitious plastic activation intensitycters

related to the elastic shakedown limit aRd is the relevant plastic resistance vector. The
problem is solved by searching for the minimum bigséation system displacement within
the admissible domain for base isolation stiffness, the domain characterizing the safe
shakedown behaviour for the structure.

4 NUMERICAL APPLICATIONS

The minimum displacement design of the base isnilatievice for the steel frame in Fig. 5
has been obtained referring to the previously pseddormulation. The design problem (17)
has been solved utilizing a suitable MATLAB dires¢arch subroutine. The frame is
constituted by square box cross section elemerits & 250 mm and constant thicknesses
as listed in Table 1. Furthermore, the followinggetrical and material characteristics have
been assumed:, =7.00m, L, =4.00m, H =4.00 m, Young modulust =210 GP¢, yield

stress o, =235 MPa. The rigid perfectly plastic hinges are locatedttat extremes of all
elements and an additional hinge is located imifdglle point of the longer beams.

Table 1. Thicknesses (mm) of the frame.
El. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
t 16 16 16 16 19 16 19 24 19 34 19 40 16 16 16 16

El. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
t 16 16 16 19 23 29 36 40 16 16 16 16 18 30 16 16
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The structure is subjected to a fixed uniformlytrilimited vertical load on the beams,
0o =40kN/m and to seismic actions. The seismic masses aral eau each floor:

m=35.88 kN §/ n. The equivalent damping coefficient of the basdaison system has been
assignedd, =0.10. In the case under examination the ground acdelara, has been
characterized by the following Kanai-Tajimi paraeret ¢, =0.65, @, =19 rad < and

S =0005C. The adopted load combinations are defined by ssigaed fixed load

multipliers EOS =0.8 and to an imposed minimum seismic load multip§€r=1. The optimal
base isolation displacement has been fognd103mm related to a base isolation stiffness

k, =0.81kN/ mm and to a shakedown load multiplié? = 4.88. It is worth noting (Fig. 6a,b)
that the seismic load multiplier minimum value isached fork, =3.78kN/ mm and
s, =121mm, but the searched displacement decreases tithingmum decreasing the base

isolation stiffness, with a great safety marginhwigspect to the shakedown.
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Figure 5 — Frame under examination.

5 CONCLUSIONS

The present paper has been devoted to the optiesadrd of a base isolation system for a
given structure subjected to seismic loads. In i@#gr, an appropriate minimum
displacement seismic protection device optimal glesiormulation is proposed for an
assigned elastic perfectly plastic steel frame tamed to behave in conditions of elastic
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shakedown. The overhanging structure has been assasna plane steel frame subjected to a
suitable combinations of fixed and seismic loadd #me selected isolation system is an
elastomeric isolator. The main problem to be solwbén facing the proposed design is that,
in the case of real seismic actions, the load hisit® not known but a suitably defined
admissible load domain is required in order to quenfthe shakedown behaviour design. In
order to achieve this aim, in the paper refererag lieen made to the unrestricted dynamic
shakedown theory. The dynamic structural respansétained by means of a modal analysis

making reference to the non-classically damped catral model. Some numerical
applications conclude the paper.
& Sp
207 350
l -
' 300 | =]
[ \ ‘B
15 A " _ || o
| 250 | °
" '. =
| 200 7 | i
i | \ =
\ 1504\ 2
g \I\._\ 100 4 \\""'7_ L N
.\.“"‘--\.\_‘__ 53 -
0 : : ___.__7_’_.__ — ky 0 ; : : : kg,
0 1 2 3 4 3 a) 0 1 2 3 4 3 b)
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REFERENCES

[1] Giambanco, F., Palizzolo, L., Benfratello, SidaCaffarelli, A., “Optimal Design Of
Structures Equipped With Different Seismic ProtagtDevices”, Int. Sym. on Recent
Adv. in Mech., Dyn. Syst. and Probability TheoryDHM - 2007, Palermo, June 03-06,
2007 (2007).

Di Paola, M., and Pirrotta, A., “Time delay unckd effects on control of linear systems
under random excitation”, Prob. Eng. Mech., 16 4By51 ( 2001).

Kelly, J.M., “A seismic base isolation: a rewieand bibliography”, Soil Dyn. & Earth.
Eng.; 5:202-16 (1986).

Buckle, J.G., and Mayes, R.L. “Seismic isolatitistory, application and performance
a world overview”, Earthquake Spectra, 6(2):161—¢(890).

A. Baratta and I. Corbi, Optimal design of baselators in multi-storey buildings,
Computers & Structures, 82, 2199-2209, (2004).

Jangid, R.S., "Optimum lead-rubber isolationafdegs for near-fault motions",
Engineering Structures, 29, 2503-2513, (2007).

Borino, G., and Polizzotto, C., “Dynamic shaked of structures under repeated
seismic loads”, J. Eng. Mech. ASCE 121(12), 1306413.995).

[2]
[3]
[4]
[5]
[6]
[7]

[8]

[9]
[10]

Caughey, T.K. and O’Kelly M.E.J., “Classicalmual modes in damped linear dynamic
systems”, J. Appl. Mech. ASME 32, 583-588 (1965)

Muscolino, G., Dinamica delle strutture. McGrdill, ISBN 88-386-0900-4, (2002).

De Martino, A and Di Paola, M, “Dynamic shake¢h analysis under stochastic loads”.
In Euromech 413 Colloquium on "Stoch. Dyn. of Naekr Mech. Syst.", (2000).

Meccanica dei Materiali e delle Strutture | 4 (2014), 1, PP. 61-70

70



