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Abstract. In this paper the evolution of a time domain dynamic identification technique based 
on a statistical moment approach is presented. This technique can be used in the case of 
structures under base random excitations in the linear state and in the non linear one. By 
applying ˆIto  stochastic calculus, special algebraic equations can be obtained depending on 
the statistical moments of the response of the system to be identified. Such equations can be 
used for the dynamic identification of the mechanical parameters and of the input. The above 
equations, differently from many techniques in the literature, show the possibility of obtaining 
the identification of the dissipation characteristics independently from the input. Through the 
paper the first formulation of this technique, applicable to non linear systems, based on the 
use of a restricted class of the potential models, is presented. Further a second formulation of 
the technique in object, applicable to each kind of linear systems and based on the use of a 
class of linear models, characterized by a mass proportional damping matrix, is described. 

Sommario. In questo articolo si presenta l’evoluzione di una tecnica di identificazione 
dinamica basata su un approccio che utilizza i momenti statistici della risposta strutturale. 
Questa tecnica può essere usata per sistemi lineari e non-lineari eccitati alla base da una 
forzante random. Attraverso il calcolo differenziale stocastico di ˆIto  è possibile ottenere 
speciali equazioni algebriche che dipendono dai momenti statistici della risposta del sistema 
da identificare. Le equazioni algebriche ottenute possono così essere utilizzate per 
identificare sia i parametri meccanici del sistema sia quelli legati alla forzante. 
Differentemente da altri metodi presenti in letteratura, la tecnica proposta permette di 
ottenere i parametri legati alla dissipazione viscosa, indipendentemente dall’input. Nel lavoro 
vengono presentati la prima formulazione del metodo, basata su una sottoclasse di modelli a 
potenziale e applicabile anche a sistemi non-lineari e una seconda formulazione che, 
superando alcuni dei limiti della prima, è basata su una classe di modelli lineari con matrice 
di dissipazione proporzionale alla massa. 

1. INTRODUCTION  

In the last three decades different identification techniques have been formulated based on 
the dynamic response of the systems to be identified. The first techniques requested the 
knowledge of the input (in a deterministic or in a probabilistic sense) both in the field of linear 
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system identification1,2 and in the field of non-linear system identification3,4,5. But input is 
not always simply obtainable as in the case of environmental excitations. On the other hand, 
the fact of not being necessary to measure the input is an advantage anyway.  

In the last years, the interest in developing techniques valid in the case of unmeasurable or 
unmeasured input, to which this paper is addressed, has increased. In this field, referring to 
time invariant systems – namely, whose mechanic characteristics can be defined 
independently from the time and the state variables - some interesting parametric approaches 
have been proposed in the literature6,7. In the field of the non-parametric approaches, the 
works8,9 have to be remembered.  

In the works referenced above the damping estimation dependence from the characteristics 
of the input is stressed, evidencing also the connected estimation difficulties. These 
difficulties increase in the case of hysteretic systems or in general in the case of systems that, 
because of deterioration, change their mechanical characteristics. In fact, for these systems the 
knowledge of the input is also requested4,5. 

The actual framework of the research in dynamic identification shows that the 
improvement of the available techniques or the formulation of new techniques, not depending 
on input data, is a target to be reached. In the present paper a time domain approach and its 
evolution is discussed. First the identification of MDOF non-linear systems under a 
unmeasured unknown white noise input is faced, further an implementation of the method 
explained, devoted to linear systems but with some specific properties that make it better from 
the computational point of view, is described.  

In the first and in the second case the identification procedure consists of three steps. The 
stiffness and dissipation parameters are obtained respectively in the first and in the second 
step while the input parameters are obtained in the third one. In each stage ̂Ito  calculus10 is 
used and some analytical manipulations are carried out in order to obtain the solving 
equations.  

For identification purpose, in the first case, a particular class of potential models, referred 
with the acronyms RPM, is used. For this class the energy dissipation depends on the 
velocities and on a polynomial of the total energy of the system, while the restoring forces 
may be any type of non-linear function of the displacements to which a potential energy can 
be associated11,12. RPMs have been used here mainly for the following reasons: i) their 
analytical properties make simple the posing of an identification problem; ii) RPMs allow one 
to describe the behaviour of a very wide class of non-linear systems, as it was shown in the 
works11,12; iii) the response of RPM in a statistical sense is exactly known, and therefore, once 
the equations describing the structural behaviour are found, the problem of finding their 
solution is also solved.  

In the second case a class of linear models is used, characterized by a mass proportional 
damping. Also in this case the structure of the model allows to formulate, in a simple way, the 
identification algorithm, further, as in the first case, the response in a statistical sense is 
exactly known, that being an advantage for each following predictive analysis.  

2. FIRST FORMULATION: MODELS USED AND ALGORITHM OBTAINED  

This formulation is based on the use of RPMs whose analytical form is  

( ) ( ) ; ( , )g H H h
∂+ + = =

∂
X K r X W X X

X
ɺɺ ɺ

ɺ
 (1) 

where X is the N-dimensional displacement vector, the upper dot meaning time derivative, 
r(X) is any non-linear function vector representing the restoring forces, and W(t) (the external 
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input) is a vector of zero mean white noise processes characterized by the correlation matrix R 
whose ij-th term Rij is 

( ) ( ) 2 ( )ij i j ijR E W t W t Kτ π δ τ = + =   (2) 

In Eq.(2) E[·] is the average operator, t means time, τ is a time delay, ( )δ τ is the Dirac’s 
delta and Kij is the ij-th term of the matrix K, that is the Power Spectral Density (PSD) matrix 
of W. In Eq.(1) ( , )h X Xɺ  is the total energy of the system, that is  

( , ) ( )T1
h U

2
= +X X X X Xɺ ɺ ɺ

 
(3) 

( )U X  being the potential energy whose partial derivatives are the restoring forces 

( ( ) ( ) /i ir U X= ∂ ∂X X ), 
∂

∂Xɺ
is a velocity gradient operator, that is ,......,

T

1 2X X

∂ ∂ ∂ =  ∂ ∂ ∂ Xɺ ɺ ɺ
, 

finally g(·) is a non-linear function. 
The second term in the left side of Eq.(1) constitutes a vector of dissipation forces 

depending on some invariant parameters and the PSD matrix K. For the aim of this study a 
polynomial form of the function ( )g H has been fixed, that is 

( ) [ ]( , )
s

j
j

j 1

g H a hπ
=

= ∑ x xɺ  (4) 

where aj (j=1,…,s) are invariant parameters.  
By some analytical manipulations13 and by applying the ˆIto calculus the following 

equations can be obtained, respectively, for the identification of the stiffness parameters and 
of the dissipation parameters  

( )2k 1 2k 1
i iE X E X  − −   + =   X r X 0ɺɺ

 
(5) 

( )
s

m j 2 2 m 1 m 2 2
j

j 1
i ija E H X E H m 1 E H X 0+ − − −

=

     − + + − =     ∑ ɺ ɺ

 
(6) 

These equations describe a set having as coefficients the averages of some functions of the 
response and as unknowns the parameters defining the restoring forces and the dissipation 
forces. Hence Eq.(5) and Eq.(6) can be used once the above averages are evaluated by 
processing the system response. Eq.(5) and Eq.(6) do not depend on the parameters that define 
the input, this fact constituting a simplification in the identification problem. Nevertheless 
Eq.(6) is not sufficient for the identification of the damping forces depending also, as 
evidenced in Eq.(1), on the PSD matrix of the input. Hence a complete estimation of the 
dissipation forces depends on the identification of the matrix K. Further analytical 
manipulations13 allow to obtain the following equation for the identification of each term of 
the matrix K  

q iqiE X X K  π+  = − 
ɺ ɺɺ

 
(7) 

where the signum (+) means that the quantity iX +ɺɺ  is shifted of dt with respect of qXɺ . The 

details regarding the strategies for obtaining Eq.(5) and Eq.(6) can be found in the papers13,14.  
As already mentioned, once the model parameters have been identified the response of the 

system can be obtained, in a statistical sense, on the base of the knowledge of the exact 
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expression of the probability density function (pdf), that is 

( )( ) exp ( , ) ;
1

p c g h
π

 = − 
 

X,X x, x x xɺ ɺ ɺ  

( )..... exp ( , ) 1 n 1 n
1 1

g h dx dx dx dx
c π

+∞ +∞

−∞ −∞

 = − 
 ∫ ∫ x xɺ ɺ ɺ… …  

(8) 

Observe that this pdf gives an equal distribution in probability of the velocities in each 
degree of freedom. This fact does not prevent the use for systems that are featured by a 
different distribution in probability of the velocities as it will be clarified in the next section. 

3. FIRST FORMULATION: COMPUTER SIMULATION 

The response was generated by means of the following three-degrees-of-freedom model  

( ) ( ) ;α+ + =X f X r X Wɺɺ ɺ ( ) , , ;
T

3 3 3
1 2 3X X X   =   

f Xɺ ɺ ɺ ɺ  

[ ]( ) ; ;
T 3 3 3

1 2 2 3 3 1 1 2 3 3 1 1 2 2 31 2 3r X b X b X b X c X c X c X d X d X d X = + + + + + +   
(9) 

where r(X) is a restoring force vector, α is a dissipation time invariant parameter that was 
assumed equal to 0.005. The values of the parameters of the restoring forces and the entries of 
the PSD matrix of the input (kij) were fixed as follows 

; ; ; ; ; ;

; ; ; ,
1 2 3 1 2 3

1 2 3 ij 0

b 200 b 100 b 0 c 100 c 200 c 100

d 0 d 100 d 100 K K 100 i j

= = − = = − = = −
= = − = = = ∀

 (10) 

It is simply recognizable that Eq.(9) does not belong to the class of RPMs and does not 
give the same statistics for the velocities in each degree-of-freedom. Once the time history of 
the input was generated by the PSD matrix, that refers to a base excitation, the system 
response was calculated by the fourth order Runge Kutta integration of Eq.(9) and was 
processed by the identification algorithm. 

For the identification, the following RPM was selected 

( ) ( )ˆ ˆˆ ˆ1 2a 2a Hπ+ + + =X KX r X Wɺɺ ɺ  (11) 

where ( )r̂ X  and the entries ̂ ijK of K̂ were assumed to have the following form 

( ) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ; ; ;3 3 3
1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 ij 0b X b X b X c X c X c X d X d X d X k K= + + + + + + =r X  (12) 

Now ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , , , , , , ,1 2 1 2 3 1 2 3 1 2 3 0a a b b b c c c d d d K are coefficients to be estimated. The algorithm 
will be effective if, at the end of the identification procedure, the following identities are 
obtained 

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , , , , , ;1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 0 0b b b b b b c c c c c c d d d d d d K K= = = = = = = = = =  (13) 

Referring to the PSD matrix of the input, because of the different distribution in probability 
of the velocities of the “real system”, the estimation of ˆ

ijK  by Eq.(7) were further processed: 

it was proved that a good estimation of ˆ
0K could be obtained using the results of Eq.(7) itself 

by means of the following equation 
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,

,

ˆ

ˆ

N N

ij

i 1 j 1
0

k

K
N N

= = =
⋅

∑

 

(14) 

Once the parameters ˆ ˆ,1 2a a were estimated, the energy moment of the “real system”, 
depending on the variance of the velocities in each degree-of-freedom, could be compared to 
the energy moment obtainable by the pdf of the RPM used for the identification, so to verify 
the suitability of the dissipation parameters obtained. In Figure 1 the results of the estimation 
of the stiffness parameter are inserted while in Figure 2 the parameter defining the input, K0, 
and the comparison between the average of the energy of the identified system, obtained from 
its response, and the average of the energy of the identifying model, calculated by its pdf, are 
inserted.  
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Figure 1: First formulation: estimation of the stiffness parameters  

The estimations are made at each instant during an observation time of 600 sec. Figures 1 
and 2 show that a good estimation is possible after few seconds of observation, that is basic 
for a system that is supposed to be time invariable.  
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Figure 2: First formulation: estimation of the input parameter (a)  

and evaluation of the average of the energy by the identifying model (b) 

4. SECOND FORMULATION: MODELS USED AND ALGORITHM OBTAINED  

Now the attention is focused on a restricted class of MDOF linear models that can be 
described by the following relationship 

+ + =MX DX SX Wɺɺ ɺ  (15) 

where M is the NxN diagonal mass matrix (N is the number of degrees of freedom modelled 
by Eq.(15)), D is a damping matrix and S is the stiffness matrix, while W assume the 
significance specified above. Let the model (15) refer to classically damped systems with 
distinct un-damped natural frequencies and D simply proportional to the matrix M, that is  

α=D M  (16) 

Taking Eq.(16) into account, in the case of base excitation, Eq.(15) can be rewritten in the 
form: 

0Wα+ + =MX MX SX MLɺɺ ɺ  (17) 

L being the N-dimensional vector assuming the form [ ], ,........,T 1 1 1=L and W0 the white noise 

base input whose power spectral density is K0 . By multiplying both sides of Eq.(17) by M-1 
one obtains 

* *; 1
0a W −+ + = =X X S X L S M Sɺɺ ɺ  (18) 

By some analytical manipulations and by applying the ˆItocalculus the following equations 
can be obtained, respectively, for the identification of the stiffness parameters, of the 
dissipation parameter and of the input parameter15 

i iE X E X     + =   
*X S X 0ɺɺ  (19) 

2
i i iE X X E Xα+   = −   
ɺ ɺɺ ɺ  (20) 

N

i i 0
i 1

E X X N Kπ+

=

  = − ∑ ɺ ɺɺ  (21) 

a) b) 
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5. SECOND FORMULATION: COMPUTER SIMULATION 

The response was generated by means of the following three-degrees-of-freedom shear 
building model 

0Wα+ + =MX MX SX MLɺɺ ɺ  (22) 

where M is the diagonal matrix in which each diagonal term has the value of 42 10⋅ , while S 
is the stiffness matrix having the following components 

6 6
1 2 3

6 6 6
1 2 3

6 61 2 3

4 10 2 10 0b b b

c c c 2 10 4 10 2 10

d d d 0 2 10 2 10

 ⋅ − ⋅      = = − ⋅ ⋅ − ⋅     − ⋅ ⋅    

S  (23) 

Eq.(22) can be rewritten in the form 

*
0Wα+ + =X X S X Lɺɺ ɺ  

*

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

1
11 2 3 1 2 3

1 1
1 2 3 2 1 2 3

1 1 2 331 2 3

200 100 0

100 200 100

0 100 100

mb b b b b b

c c c m c c c

d d dmd d d

−

− −

−

−
− −

−

             = = = =                 

S M S  
(24) 

in order to obtain a mass matrix normalized form to which the identification algorithm refers. 
Three different simulations were performed, characterized by different values of the 

dissipation parameter α and of the input parameter K0 . For the identification, the following 
linear model was selected 

* *;
1 2 3

1 2 3

1 2 3

b b b

c c c

d d d

α
 
 

+ + = =  
 
 

X X S X W S

ɶ ɶ ɶ

ɶ ɶɺɺ ɺ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ

 (25) 

where , , , , , , , ,1 2 3 1 2 3 1 2 3b b b c c c d d dɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ  were the coefficients to be estimated. The PSD of the 

base excitation, to be estimated, was 0Kɶ . Clearly, the algorithm will be effective if, at the 
end of the identification procedure, the following identities are obtained: 

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 0 0

ˆ ˆ ˆ ˆ ˆ ˆb b , b b , b b , c c , c c , c c ,

ˆ ˆ ˆd d , d d , d d , K K ,α α

= = = = = =

= = = = =

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 (26) 

In the next Figures the results obtained in one of the simulations are shown. 
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Figure 3: Estimation of the dissipation parameter (a) and of the input parameter (b)  
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Figure 4: Estimation of the stiffness parameters 

6. CONCLUSIONS 

Two formulations of an identification technique based on a statistic moment approach have 
been discussed. The above technique is suitable for civil structures under a base excitation 
that can be modelled as a white noise. 

The first formulation uses a class of potential models characterized by an equal 
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probabilistic distribution of the velocities in each degree of freedom but is usable, thanks to 
proper manipulations, for the identification of systems that, as it usually happens, are 
characterized by a different probability distribution of the velocities. An application shows the 
possibility of obtaining a good estimation for the stiffness parameters, for the input 
characteristics and for the dissipation ones. Moreover the suitability of this formulation for 
non linear systems has been proved. 

The second formulation of the technique is proper for linear systems and is based on linear 
models with a mass proportional damping. An application shows the capacity of obtaining a 
good estimation of the stiffness and dissipation parameters and of the input characteristics. 

The technique discussed has the advantage of being applicable in the case of unmeasured 
or unmeasurable input. Further the algorithms of the first and of the second formulation 
evidence the possibility of estimating dissipation and input parameters by uncoupled 
equations differently from the analytical procedures most frequently proposed in the 
literature. 
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