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Abstract. In this paper the evolution of a time domain dyramentification technique based
on a statistical moment approach is presented. Tégtinique can be used in the case of
structures under base random excitations in thedmstate and in the non linear one. By
applying 1t6 stochastic calculus, special algebraic equatioas be obtained depending on
the statistical moments of the response of thesysb be identified. Such equations can be
used for the dynamic identification of the mechanparameters and of the input. The above
equations, differently from many techniques inlitieeature, show the possibility of obtaining
the identification of the dissipation characteristindependently from the input. Through the
paper the first formulation of this technique, apable to non linear systems, based on the
use of a restricted class of the potential modslpresented. Further a second formulation of
the technique in object, applicable to each kindirgar systems and based on the use of a
class of linear models, characterized by a masgp@roonal damping matrix, is described.

Sommario. In questo articolo si presenta l'evoluzione di utexnica di identificazione
dinamica basata su un approccio che utilizza i mumstatistici della risposta strutturale.
Questa tecnica puo essere usata per sistemi linearon-lineari eccitati alla base da una
forzante random. Attraverso il calcolo differeneiadtocastico dilté € possibile ottenere

speciali equazioni algebriche che dipendono dai enairstatistici della risposta del sistema
da identificare. Le equazioni algebriche ottenutesgpno cosi essere utilizzate per
identificare sia i parametri meccanici del sistenga quelli legati alla forzante.
Differentemente da altri metodi presenti in lettewra, la tecnica proposta permette di
ottenere i parametri legati alla dissipazione visapindipendentemente dall’input. Nel lavoro
vengono presentati la prima formulazione del metddsata su una sottoclasse di modelli a
potenziale e applicabile anche a sistemi non-linearuna seconda formulazione che,
superando alcuni dei limiti della prima, € basatauna classe di modelli lineari con matrice
di dissipazione proporzionale alla massa.

1. INTRODUCTION

In the last three decades different identificatiechniques have been formulated based on
the dynamic response of the systems to be idettiflde first techniques requested the
knowledge of the input (in a deterministic or iprababilistic sense) both in the field of linear
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system identificatioh? and in the field of non-linear system identificef}®,>. But input is
not always simply obtainable as in the case ofrenmental excitations. On the other hand,
the fact of not being necessary to measure thd is@n advantage anyway.

In the last years, the interest in developing teqpes valid in the case of unmeasurable or
unmeasured input, to which this paper is addredsaslincreased. In this field, referring to
time invariant systems — namely, whose mechanicracteristics can be defined
independently from the time and the state variabk®me interesting parametric approaches
have been proposed in the literafiireln the field of the non-parametric approaches, th
works”,? have to be remembered.

In the works referenced above the damping estimatépendence from the characteristics
of the input is stressed, evidencing also the coiede estimation difficulties. These
difficulties increase in the case of hysteretideyss or in general in the case of systems that,
because of deterioration, change their mechaniwabcteristics. In fact, for these systems the
knowledge of the input is also requeéfed

The actual framework of the research in dynamicntifieation shows that the
improvement of the available techniques or the tdation of new techniques, not depending
on input data, is a target to be reached. In tlesgmt paper a time domain approach and its
evolution is discussed. First the identification MIDOF non-linear systems under a
unmeasured unknown white noise input is facedhéuran implementation of the method
explained, devoted to linear systems but with sepeeific properties that make it better from
the computational point of view, is described.

In the first and in the second case the identificaprocedure consists of three steps. The
stiffness and dissipation parameters are obtaiasgectively in the first and in the second
step while the input parameters are obtained irthhid one. In each stagéé calculud® is
used and some analytical manipulations are carodin order to obtain the solving
equations.

For identification purpose, in the first case, atipalar class of potential models, referred
with the acronymsRPM, is used. For this class the energy dissipatiopedds on the
velocities and on a polynomial of the total eneofythe system, while the restoring forces
may be any type of non-linear function of the diggiments to which a potential energy can
be associatéd’®>. RPMs have been used here mainly for the following reasad) their
analytical properties make simple the posing oidantification problem; ilRPMsallow one
to describe the behaviour of a very wide classarf-lnear systems, as it was shown in the
works'*2 i) the response dRPMin a statistical sense is exactly known, and floeee once
the equations describing the structural behaviaer faund, the problem of finding their
solution is also solved.

In the second case a class of linear models is, ubedacterized by a mass proportional
damping. Also in this case the structure of the ehatlows to formulate, in a simple way, the
identification algorithm, further, as in the firsase, the response in a statistical sense is
exactly known, that being an advantage for eadbvi@hg predictive analysis.

2. FIRST FORMULATION: MODELSUSED AND ALGORITHM OBTAINED
This formulation is based on the useREMswhose analytical form is
>’<’+Kaixg(H)+r(X)=w; H=h(X, X) (1)

where X is the N-dimensional displacement vector, the ugm¢ meaning time derivative,
r(X) is any non-linear function vector representing téstoring forces, and(t) (the external
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input) is a vector of zero mean white noise proegsharacterized by the correlation maRix
whose ij-th ternR; is

R = E[WO)W( t1)] =27 Ko@) 2)

In Eq.(2)E['] is the average operatdrmeans timey is a time delay,d(r) is the Dirac’s
deltaandKj is the ij-th term of the matrik, that is thePower Spectral DensitfPSD matrix
of W. In Eq.(1) h(X,X) is the total energy of the system, that is

h(x,X):%XTX +U(X) 3)
U(X) being the potential energy whose partial deriestivare the restoring forces
Q. : : 9" [0 0
((X)=0U (X)/dX;), —is a velocity gradient operator, that is— =| —,......— |,
(1) =00 0)/0%,), 2 v 9 p & =l

finally g(-) is a non-linear function.

The second term in the left side of Eqg.(1) constgua vector of dissipation forces
depending on some invariant parameters andP®ie matrix K. For the aim of this study a
polynomial form of the functiong(H) has been fixed, that is

a(H) =73 a [rx, 0] @

whereg; (j=1,...,S) are invariant parameters.

By some analytical manipulatiofisand by applying th&d calculus the following
equations can be obtained, respectively, for teatiication of the stiffness parameters and
of the dissipation parameters

E[)’('xﬁk‘l] + E[r(X)XiZk'l] =0 (5)

‘ZjajE[Hmﬂ_ZXiz]*E[Hnﬂ]*(m‘]) BE H””XZ]= 0 (6)
j=1

These equations describe a set having as coetfdiea averages of some functions of the
response and as unknowns the parameters definengesitoring forces and the dissipation
forces. Hence Eg.(5) and EQ.(6) can be used oneealiove averages are evaluated by
processing the system response. Eq.(5) and Eq(6dtddepend on the parameters that define
the input, this fact constituting a simplificatiam the identification problem. Nevertheless
Eq.(6) is not sufficient for the identification dhe damping forces depending also, as
evidenced in Eg.(1), on theSD matrix of the input. Hence a complete estimatiérthe
dissipation forces depends on the identification tbé matrix K. Further analytical
manipulation$’ allow to obtain the following equation for the idification of each term of
the matrixk

E[ X, % | =-7Kq (7)

where the signum (+) means that the quantiy is shifted ofdt with respect of X,. The

details regarding the strategies for obtaining Bopad Eq.(6) can be found in the pap&ts
As already mentioned, once the model parameters haen identified the response of the
system can be obtained, in a statistical sensegherbase of the knowledge of the exact

Meccanica dei Materiali e delle Strutture | 3
Vol. 1 (2009), no.2, pp. 1-10
ISSN: 2035-679X



Giuseppina Amato, Liborio Cavaleri.

expression of the probability density functiquf), that is
. 1 .
Px,x (X,X) = cexp(—]—T g( h(x x ))j ;

(8)

o0+

1 ¢ 1 . ,
_:'[ ..... ex;{—]—Tg(hQ(,x)jd&,..dx] dx... dx

—0 —_

Observe that thipdf gives an equal distribution in probability of thelocities in each
degree of freedom. This fact does not prevent @ for systems that are featured by a
different distribution in probability of the veld®s as it will be clarified in the next section.

3. FIRST FORMULATION: COMPUTER SIMULATION
The response was generated by means of the folipivnee-degrees-of-freedom model

Kvat (X)+r(x)=w; [ f(x)] =[ %3, x8 %¢];

(9)
[rOO]" =|bX} + X+ i X a X+ @B+ e % dX+ @)% d¥

wherer(X) is a restoring force vectog, is a dissipation time invariant parameter that was
assumed equal to 0.005. The values of the parasnaftéine restoring forces and the entries of
thePSDmatrix of the inputk) were fixed as follows

by =200 b=-100 b= 0 ¢=- 100 &= 20036- 10

di=0,d,=-100 ¢= 100 K= K= 1001 ,i j (10)

It is simply recognizable that Eq.(9) does not hgldo the class dRPMsand does not
give the same statistics for the velocities in edebree-of-freedom. Once the time history of
the input was generated by tIRSD matrix, that refers to a base excitation, the esyst
response was calculated by the fourth order RunggaKintegration of Eq.(9) and was
processed by the identification algorithm.

For the identification, the followinBPMwas selected

X + (& + 28 H)KX +F(X) =W (11)
where f(X) and the entriesK; of K were assumed to have the following form
T(X)=bXi+BXo+ BXs aX+r e Rt e X d X A% d% F ok (12)

Now &, &, b, b, 1,6, G, e, 4, &, &, K are coefficients to be estimated. The algorithm

will be effective if, at the end of the identificen procedure, the following identities are
obtained

bh=b,b=hb=he=ce=6'e 6 & d & d & d K + (13
Referring to the>SDmatrix of the input, because of the differentrlsition in probability
of the velocities of the “real system”, the estiiatof Kij by Eq.(7) were further processed:

it was proved that a good estimation Kf could be obtained using the results of Eq.(7)fitsel
by means of the following equation
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N,N

(14)

ki
i=1,j=1

=K
NN 0

Once the parameter§,;, & were estimated, the energy moment of the “realegyst

depending on the variance of the velocities in edetdree-of-freedom, could be compared to
the energy moment obtainable by hdf of theRPM used for the identification, so to verify
the suitability of the dissipation parameters atedi In Figure 1 the results of the estimation
of the stiffness parameter are inserted while gufé 2 the parameter defining the inpt,
and the comparison between the average of the epéthe identified system, obtained from
its response, and the average of the energy atlédmtifying model, calculated by ifsdf, are

inserted.
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Figure 1: First formulation: estimation of the Btédss parameters

The estimations are made at each instant duringbaarvation time of 600 sec. Figures 1
and 2 show that a good estimation is possible &t@rseconds of observation, that is basic
for a system that is supposed to be time invariable
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Figure 2: First formulation: estimation of the ingarameter (a)
and evaluation of the average of the energy bydhetifying model (b)

4. SECOND FORMULATION: MODELSUSED AND ALGORITHM OBTAINED

Now the attention is focused on a restricted clafls®DOF linear models that can be
described by the following relationship

MX + DX +SX =W (15)

whereM is theNxN diagonal mass matrixN(is the number of degrees of freedom modelled
by EqQ.(15)),D is a damping matrix an® is the stiffness matrix, whil&/ assume the
significance specified above. Let the model (13g¢r¢o classically damped systems with
distinct un-damped natural frequencies Bnsimply proportional to the matrid, that is
D=aM (16)
Taking Eq.(16) into account, in the case of basataton, Eq.(15) can be rewritten in the
form:

MX +aMX + SX = MLW, (17)

L being the N-dimensional vector assuming the folt:Fnz[l,J, ........ J] andW, the white noise
base input whose power spectral densitl{gs By multiplying both sides of Eq.(17) by™
one obtains

X+aX +S'X=LW; S =M'S (18)

By some analytical manipulations and by applyinglticalculus the following equations
can be obtained, respectively, for the identifimatiof the stiffness parameters, of the
dissipation parameter and of the input param&ter

E[X’xi] +S E[X)g] =0 (19)
E[ X X" |=-a g ¥] (20)
y E[ X %" [=-7NK (21)
i=1
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5. SECOND FORMULATION: COMPUTER SIMULATION

The response was generated by means of the folijpthiree-degrees-of-freedom shear
building model

MX +aMX +SX = MLW (22)

whereM is the diagonal matrix in which each diagonal téwas the value o210*, while S
is the stiffness matrix having the following compaots

b, b b AN -2m@ 0
S=|laq ¢ c|=|-2m6 4118 - 2116 (23)
di dy ds 0 -2 2m6

Eq.(22) can be rewritten in the form

X+aX+S X =LW

b by by |M b b k| [200 -100 0] (24)
S=M1s=|¢g & &l= npt G & &|=|-100 200 - 10
&1 82 a3 ITE]' d; do ds 0 -100 100

in order to obtain a mass matrix normalized forrwkach the identification algorithm refers.
Three different simulations were performed, chaaoeéd by different values of the

dissipation parametar and of the input paramet&y . For the identification, the following
linear model was selected

b b b

X+dX+SX=W; S =6 & & (25)

dp dy ds

where Dby, by, b3, @, &, G, 0, b, & Were the coefficients to be estimated. D of the

base excitation, to be estimated, wig . Clearly, the algorithm will be effective if, ate
end of the identification procedure, the followikigntities are obtained:

51=51,A52=Abz ,:Q=h 67676760 6 )
dlzdyaz= d2’~ds= d ., K= Kd=a

In the next Figures the results obtained in onth@fsimulations are shown.
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Figure 3: Estimation of the dissipation paramet@rafnd of the input parameter (b)
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Figure 4: Estimation of the stiffness parameters

6. CONCLUSIONS

Two formulations of an identification technique ed®on a statistic moment approach have
been discussed. The above technique is suitableifbrstructures under a base excitation
that can be modelled as a white noise.

The first formulation uses a class of potential eledcharacterized by an equal
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probabilistic distribution of the velocities in dadegree of freedom but is usable, thanks to
proper manipulations, for the identification of &yms that, as it usually happens, are
characterized by a different probability distritautiof the velocities. An application shows the
possibility of obtaining a good estimation for tistiffness parameters, for the input
characteristics and for the dissipation ones. Mageahe suitability of this formulation for
non linear systems has been proved.

The second formulation of the technique is propetifhear systems and is based on linear
models with a mass proportional damping. An appbcashows the capacity of obtaining a
good estimation of the stiffness and dissipatiarapeters and of the input characteristics.

The technique discussed has the advantage of bppigable in the case of unmeasured
or unmeasurable input. Further the algorithms ef finst and of the second formulation
evidence the possibility of estimating dissipatiand input parameters by uncoupled
equations differently from the analytical procedurmost frequently proposed in the
literature.

REFERENCES

[1] G.H. McVerry, “Structural identification in thdérequency domain from earthquake
records”,Earthquake Engineering and Structural Dynam&s2, 161-180, (2007).

[2] M. Shinozuka, C. Yun, H. Imai, “Identificatioof linear structural dynamic systemg’,
Eng. Mech, 108: 6, 1371-1390, (1982).

[3] M. Panet, L. Jezequel, “Dissipative unimodalustural damping identificationint. J.
Non-Linear Mech.35, 795-815, (2000).

[4] J.N. Yang, S. Lin, “On-line identification ofam-linear hysteretic structures using an
adaptive tracking techniqudht. J. Non-Linear Mech39, 1481-1491, (2004).

[5] S. Saadat, G.D. Buckner, T. Furukawa, M.N. No®kn intelligent parameter varying
(IPV) approach for non-linear system identificatioh base excited structuredt. J.
Non-Linear Mech.39, 993-1004, (2004).

[6] M. Vasta, J.B. Roberts, “Stochastic parametgin@ation of non-linear systems using
only higher order spectra of the measured resppds8&bund Vib.213, 201-221, (1998).

[7] J.B. Roberts, M. Vasta, “Parametric identifioat of systems with non-Gaussian
excitation using measured response spedaah. Eng. Mech .15, 59-71, (2000).

[8] F. Rudinger, S. Krenk, “Non-parametric systateritification from non-linear stochastic
response”’Prob. Eng. Mech.16, 233-243, (2001).

[9] F. Rudinger, S. Krenk, “Identification of non&ar oscillator with parametric white noise
excitation”,Nonlinear Dynamics36, 379-403, (2004).

[10] A.H. JazwinskyStochastic processes and filtering theokgademic Press, (1970).

[11]L. Cavaleri, M. Di Paola, “Statistic momentktbe total energy of potential systems and
applications to equivalent non-linearizatiohit. J. Non-Lin. Mech.35, 573-587, (2000).

[12]L. Cavaleri, M. Di Paola, G. Failla,”"Some pespes of multi-degree of freedom potential
systems and application to statistical equivalem-inearization”,Int. J. Non-Linear
Mech, 38:3, 405-421, (2003).

[13]L. Cavaleri, “Identification of stiffness, digation and input parameters of randomly
excited non-linear systems: capability of Restdcteotential Models RPM)”, Int J
Non-Linear Mech.41:9, 1068-1083, (2006).

[14]L. Cavaleri, M. Papia, “A new dynamic identidition technique: application to the
evaluation of the equivalent strut for infilled imas”, Eng. Struct.25, 889-901, (2003).
[15]S. Benfratello, L. Cavaleri, M. Papia, “Idéfigation of stiffness, dissipation and input

parameters of multi degree of freedom civil systemder unmeasured base excitations”.

Meccanica dei Materiali e delle Strutture | 9
Vol. 1 (2009), no.2, pp. 1-10
ISSN: 2035-679X



Giuseppina Amato, Liborio Cavaleri.

Prob. Eng. Mech 24:2, 190-198, (2009).

Meccanica dei Materiali e delle Strutture |
Vol. 1 (2009), no.2, pp. 1-10
ISSN: 2035-679X

10



