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Abstract. The present paper is devoted to the formulation of a special minimum volume 
design problem of elastic perfectly plastic frames subjected to different combinations of fixed 
and seismic loads. The optimal structure must behave elastically for fixed loads, shakedown 
for serviceability conditions and prevent the instantaneous collapse for suitable combinations 
of fixed and seismic loadings. The design variables are represented by defined discrete sets. 
Moreover, element buckling and P-Delta effects are considered. Different numerical 
applications conclude the paper.  

Sommario. Il lavoro che si presenta è rivolto ad una particolare formulazione del problema 
di progetto di minimo volume di telai costituiti da materiale a comportamento costitutivo 
elastico perfettamente plastico e soggetti a diverse combinazioni di carichi fissi ed azioni 
sismiche. La struttura è progettata in modo da esibire un comportamento elastico sotto gli 
assegnati carichi fissi, da adattarsi elasticamente ai carichi di esercizio e da scongiurare il 
collasso istantaneo per la combinazione di carichi fissi ed elevati carichi sismici. Si assume 
l’ipotesi che le variabili di progetto appartengano ad opportuni insiemi discreti e si tiene 
conto della snellezza degli elementi strutturali, così come degli effetti P-Delta. Si effettuano 
diverse applicazioni numeriche. 

1 INTRODUCTION 

The structural optimization problems are very often formulated as search for the minimum 
structural weight which substantially provides the minimum cost to be suffered for the 
structure construction. 
On the other side, the choice of the design admissibility conditions is very complex and 
specific of the particular problem which must be formulated. These conditions are 
substantially represented by inequalities identifying one or more limit behaviour related to the 
material and/or to the structure. If reference is made to elastic plastic structures, the limit 
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conditions can characterize: the purely elastic limit behaviour; the shakedown limit behaviour; 
the plastic shakedown and/or of the incremental collapse limit behaviours beyond which the 
structure suffers an instantaneous collapse. 
In addition, further admissibility conditions can be requested. These conditions depending on 
the load condition and on the displacement structural response are related with possible P-
Delta effects and/or with possible buckling of some structural element. 
In the last decades several efforts have been devoted to the study of the optimal design of 
structures under quasi-static loads as well as dynamic actions and the fundamental results are 
reported in several books and papers (see, e.g., [1-15]). 
Aim of the present paper is to propose the formulation of a discrete variables minimum 
volume design problem for elastic perfectly plastic frame structures subjected to a 
combination of fixed and seismic actions is proposed. The optimal structure is constrained to 
behave in a purely elastic manner for the assigned fixed loads, to respect the elastic 
shakedown limit in serviceability conditions and to prevent the instantaneous collapse for 
ultimate seismic load conditions; the P-Delta effects are considered. Furthermore it is required 
to prevent the risk of element buckling for all the above described load combinations. The 
dynamic response is obtained by utilizing an appropriate modal technique referring to the 
response spectrum defined by the Italian code. Several numerical applications are effected by 
utilizing an harmony search algorithm (see, e.g., [16-17]). 
 

2 THE FRAME STRUCTURE: SCHEME AND ELASTIC RESPONSE 

In order to appropriately describe the proposed optimal design formulation, some 
fundamentals mainly regarding the definition of some appropriate model both for the frame 
structure and for the acting loads must be introduced. 

Let us consider a classical plane frame with bn  Navier type beam elements and Nn  

structure nodes, each characterized by three degrees of freedom. The following quantities are 
defined: u , frame nodal displacement vector of order 3Nn⋅ ; F , frame nodal force vector 

with the same order of u ; d , element nodal displacement vector of order 6 bn⋅ ; Q , 

generalized stress vector of order 6 bn⋅  evaluated at the extremes of the elements; *Q , 

perfectly clamped element generalized stress vector analogous to Q . 
The static linear elastic analysis problem for the plane frame is given as follows: 

 =d C u  (1a) 

 *= +Q Dd Q  (1b) 

 =CQ F%  (1c) 

where C  is the compatibility matrix with order 6 3b Nn n⋅ × ⋅ , its transpose C%  the equilibrium 

matrix, and D  the frame internal stiffness matrix with order 6 6b bn n⋅ × ⋅ . The solution to 

problem (1) is given by: 

 1 *−=u K F  (2a) 

 1* * *−= + = +Q DCu Q DCK F Q  (2b) 

In equations (2) =K CDC%  is the frame external square stiffness matrix of order 
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3 3N Nn n⋅ × ⋅  and * *= −F F CQ%  is the equivalent nodal force vector. Making reference to the 

seismic actions, let us consider the relevant frame as a flexural plane frame just subjected to 
an horizontal ground acceleration ( )ga t , where the masses are concentrated at each node. The 

structure is modelled as a Multi-Degree-Of-Freedom (MDOF) one and the dynamic 
equilibrium equations can be written in the following form: 

 ( ) ( ) ( ) ( )t t t t+ + =M u Βu K u f&& & , (3) 

being ( ) ( )gt a t= −f Mτ , M  and B  mass and damping matrices and τ  the influence vector. 

If the interest is focused only to the case of undulatory dynamic effect, it is possible to operate 
a partition and reordering of the above described matrices and vectors and to write the free 
vibration equations as: 

 
( )
( )

( )
( )

( )tt trt ttt t

rt rrr r

t t t

t t

       
+ =       

        

K Ku uM f

K Ku u

&&

&&

0

0 0 0
, (4) 

where tu  is the vector collecting the structure node horizontal displacements and ru  the 

vertical displacements and the rotations of the nodes. Equation (4) can be usefully rewritten in 
the following form: 

 ( ) ( ) ( ) ( )tt t tt t tr r tt t t t+ + =M u K u K u f&& , (5a) 

 ( ) ( )rt t rr rt t+ =K u K u 0 . (5b) 

The solution of the equation (5b) is given by: 

 ( ) ( )1
r rr rt tt t−= −u K K u . (6) 

Substituting equation (6) into equation (5a) it is obtained: 

 ( ) ( ) ( )tt t c t tt t t+ =M u K u f&& , (7) 

which represents the condensed equation of motion for free vibration and where 
1

c tt tr rr rt
−= −K K K K K  is the condensed stiffness matrix. 

Equation (7) can be solved with a classical modal technique according to the initial 
conditions ( )0t =u 0 , ( )0t =u& 0 . The dynamic characteristics of the structural behaviour are 

identified in terms of natural frequencies as well as damping coefficients. The following 
coordinate transformation is adopted: 

 ( ) ( )t t t=u Φz  (8) 

being ( )tz  the modal displacement vector and Φ  the so-called modal matrix, normalized 

with respect to the mass matrix and whose columns are the eigenvectors of the undamped 
structure, given by the solution to the following eigenproblem: 

 1 2-
c tt
− =K M Φ ΦΩ  (9a) 

 tt =ΦM Φ I%  (9b) 

 2
c =Φ K Φ Ω%  (9c) 

In equations (9a,c), besides the already known symbols, I  represents the identity matrix 
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while 2Ω  is a diagonal matrix listing the square of the natural frequencies of the structure. 
Once the modal matrix Φ  has been determined, the structure can be defined as a 

classically-damped one if d =ΦC Φ Ξ%  is a diagonal matrix whose typical non zero element 

jjΞ  is equal to 2 j jζ ω , being jω  and jζ  the thj  natural frequency and the thj  damping 

coefficient, respectively. The equation of motion in the modal space can be written as: 

 ( ) ( ) ( ) ( )t t t t+  + =2z Ξ z Ω z g&& &  (10) 

where ( ) ( )tt t=g Φf% . 

The solution of the decoupled system of equations (10) together with the corresponding 
initial conditions provides the complete structural response in terms of horizontal 
displacements in the modal space. Once these displacements are known the corresponding 
ones in the nodal space are obtained by means of equation (8), the remaining ones being 
determined by means of equation (6). 

Now, according with the guidelines of the most international codes, and in particular with 
the Italian one, seismic loadings have to be evaluated for two different main conditions: the 
serviceability conditions and the exceptional (high intensity) one. Therefore, we now assume 
that the actions are represented by three different appropriate combinations of the above 
referred loads each of which related to different limit conditions. The first combination is 

characterized by the presence of the fixed loads 0
∗F ; the second combination is defined as the 

superimposition of appropriate reduced fixed loads 0e
∗F  and low seismic actions related to the 

response spectrum SdS  (serviceability conditions); the third combination is characterized by 

the superimposition of 0e
∗F  and high intensity seismic actions related to the response spectrum 

I
dS  (ultimate conditions). 

In the above defined combinations, 0e
∗F  is a special combination of gravitational loads as 

prescribed by the referenced code, SdS  and I
dS  are the response spectra related to 

serviceability and instantaneous collapse conditions, respectively. 
Clearly, since the design problem under investigation is a minimum volume search one, the 

structural geometry is not definitely known a priori. Therefore, let the typical thν  element 
geometry be fully described by the m  components of the vector ( )1 2

ν bν , ,...,n=t  so that 

1 2 bν n, , ..., , ..., =  t t t t t% % % % %  represents the bn m×  supervector collecting all the design variables.. 

3 THE OPTIMAL DESIGN PROBLEM 

Let us consider the plane frame structure as above described constituted by elastic 
perfectly plastic material. Let it be subjected to fixed loads and perfect cyclic dynamic 
(seismic) loads identifying three different load combinations as previously described. The 
structure is required to remain elastic when no seismic actions occur, to exhibit a shakedown 
behaviour in serviceability conditions and to prevent the instantaneous collapse for high level 
seismic loadings. 

Furthermore, dealing with structures constituted by slender elements, the risk of  buckling 
as well as the P-Delta effects are considered. 
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In order to take into account the so-called P-Delta effects the bending moments acting on 
the structural nodes must be increased by the bending effect produced by the axial forces 
acting on the pillars times the drifts at each storey. Furthermore, an approximate approach is 
utilized in order to account the buckling effect (see, [18]). 

Therefore, following all the previous statements and remarks, the minimum volume design 
problem formulation can be written as follows: 

 
( )0 0 0

min
S I S I S I

k tj tj j j it , , , , , , ,

V
u u u u u Y Y

 (17a) 

 k kt T∈ ,  ( )1 2 bk , ,......,n m= ×  (17b) 

 0 0 0
∗= +Q DCu Q ,   0 0

∗− =Ku F 0 , (17c) 

 
( )

2

S
j tt d jS

tj j
j

S T

ω
=

Φ M τ
u Φ

%

,  S S
j j=Q DCu ,  S S S

kj k jj kQ Q Qρ= ∑ ∑l l l
, (17d) 

 
( )

2

I
j tt d jI

tj j
j

S T

ω
=

Φ M τ
u Φ

%

,  I I
j j=Q DCu ,  I I I

kj k jj kQ Q Qρ= ∑ ∑l l l
, (17e) 

 ( )( )0 0
PE

p
∆≡ + − ≤φ NG Q Q R%% 0 , (17f) 

 ( )( ) ( ) ( )( )0 0 01
iP S PS S S

i p e e p
∆ ∆≡ + + − + − − ≤φ NG Q Q NG Q Q SY R% %% % 0 ,  0

S ≥Y 0 , (17g) 

 ( )( ) ( ) ( )( )0 0 01
iP I PI I I

i p e e p i
∆ ∆≡ + + − + − − ≤φ NG Q Q NG Q Q SY R% %% % 0 ,  0

I
i ≥Y 0 , (17h) 

 ( )( )0 0
PE cr

cr cr
∆

η
≡ + − ≤P

φ G Q Q 0 , (17i) 

 ( )( ) ( ) ( )( )0 0 1
iP S PS S cr

icr cr e e cr
∆ ∆

η
≡ + + − + − ≤P

φ G Q Q G Q Q 0 , (17j) 

 ( )( ) ( ) ( )( )0 0 1
iP I PI I cr

icr cr e e cr
∆ ∆

η
≡ + + − + − ≤P

φ G Q Q G Q Q 0 , (17k) 

where equations (17g,h,j,k) hold for 1 2i ,=  while 1 2 smj , ,.....,n= , being smn  the number of 

structural modes and 1 2 6 b, ,....., n= ⋅l . 

In equations (17b) kt  ( )1 2 bk , ,......,n m= ×  are all the design variables defined in the 

related discrete domains kT . In equations (17c,d,e) 0u  and 0Q , 1 TS S S
j tj rr rt tj

−= −u E u K K u  

and S
jQ , 1 TI I I

j tj rr rt tj
−= −u E u K K u  and I

jQ  are the purely elastic response to the assigned full 

fixed loads, to the serviceability seismic loads related to the thj  structural mode, to the high 

intensity seismic loads related to the thj  structural mode, respectively, in terms of structure 
node displacements and element node generalized stresses, being E an appropriate matrix 
correctly reordering the node displacements.  

In equations (17f,g,h) Eφ , S
iφ  and I

iφ  are the plastic potential vectors related to the purely 

elastic limit (apex E), to the elastic shakedown limit (apex S) and to the instantaneous collapse 

limit (apex I), respectively. 0
SY  and 0

I
iY  are the fictitious plastic activation intensity vectors 
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related to the elastic shakedown limit and to the impending instantaneous collapse. In 
addition: N%  is the matrix of the external normals to the elastic domain; pG%  is an appropriate 

equilibrium matrix which applied to element node generalized stresses provides the same 

stresses acting upon the element plastic nodes; ( )
0
P∆Q  is the vector collecting the element node 

generalized stresses response related to the P-Delta effect considering acting just the full fixed 

loads; 0 00 8e .=Q Q is the elastic stress response vector to reduced fixed loads and ( )
0
P
e

∆Q  is the 

analogous of ( )
0
P∆Q  but related to the reduced fixed loads; ( )S P∆Q and ( )I P∆Q  are the 

analogous of ( )
0
P∆Q  but related to seismic serviceability conditions and high level seismic 

loads, respectively. −S  is a time independent symmetric matrix which transforms plastic 
activation intensities into plastic potentials and R  is the relevant plastic resistance vector. 
Furthermore, equations (17i,j,k) represent the admissibility conditions with respect to the 
buckling of the pillars related to the three described load combinations; crG  is a condensation 

matrix able to extract just the axial stress of the pillars; 21 265cr ,i min,i iP . EI H=  is the critical 

load related to the ith pillar; η  is an appropriate safety factor (see [18]). Problem (17) is a 
quite wide one and it can be utilized for different special applications. Actually, disregarding 
constraints (17i,j,k) and neglecting the terms affected by the P-Delta effect a standard optimal 
design is searched, namely a minimum volume one without any constraint accounting for the 
slenderness of the elements. 

4 NUMERICAL APPLICATIONS 

The optimal design of the plane steel frames plotted in Fig. 1a has been obtained referring 
to the formulation previously proposed. At first, the optimal design problem (17) has been 
solved searching for the standard optimal structure. The frame is constituted by rectangular 
box cross section elements (Fig. 1b) with 200 mmb =  and 400 mmh = , and constant 

thickness t  variable in { }4 5 40mmT , ,..., . Furthermore, 1 600 cmL = , 2 400 cmL =  and 

600 cmH = , Young modulus 221 MN cmE = , yield stress 223 5 kN cmy .σ = . 

Two rigid perfectly plastic hinges are located at the extremes of the elements, considered 
to be elastic, and an additional hinge is located in the middle point of the longer beams (Fig. 
1c). The interaction between bending moment M and axial force N has been taken into 
account. In Fig. 1d the dimensionless rigid plastic domain of the typical plastic hinge is 
plotted in the plane ( yN N , yM M ), being yN  and yM  the yield generalized stress 

corresponding to N  and M , respectively. The structure is subjected to a fixed uniformly 
distributed vertical load, 0 50 kN / mq =  and to seismic actions. We assume that the seismic 

masses located in the relevant structure nodes are equal for each floor, 2
1 12 23 kN s / mm .= ⋅ , 

2
2 20 39 kN s / mm .= ⋅ , 2

3 8 15 kN s / mm .= ⋅ (Fig. 1a). The response spectra for serviceability 

conditions (up-crossing probability in the lifetime 81%) and instantaneous collapse (up-
crossing probability in the lifetime 5%) are those corresponding to Palermo, with a soil type 
B, life time 100 years and class IV. An harmony search algorithm has been utilized [16-17]. 
The obtained results are reported in Table 1. 
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Figure 1: Four floor flexural steel frame: a) geometry and load conditions; 

b) typical rectangular box cross section of the elements; 
c) structural scheme of the relevant beams; 

d) rigid plastic domain of the typical plastic hinge. 

Volume: 1.778 
El. 1 2 3 4 5 6 7 8 9 10 
t 11 30 20 9 21 14 8 13 9 5 

El. 11 12 13 14 15 16 17 18 19 20 
t 10 4 18 39 21 20 15 10 5 7 

Table 1: Standard design volume (m3) and thicknesses (mm). 

The same frame plotted in Fig. 1 has been studied but taking appropriately into account the 
element slenderness. In particular, the minimum volume optimal design has been searched by 
considering alternatively element buckling ( 1 5.η = ), P-Delta effects and both. The results are 
reported in Tables 2, 3 and 4. 
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Volume: 1.933 
El. 1 2 3 4 5 6 7 8 9 10 
t 40 23 11 10 23 16 11 13 6 9 

El. 11 12 13 14 15 16 17 18 19 20 
t 9 4 36 28 13 24 19 7 5 4 

Table 2: Safe buckling design volume (m3) and thicknesses (mm). 

Volume: 1.833 
El. 1 2 3 4 5 6 7 8 9 10 
t 9 33 25 14 23 10 6 15 11 9 

El. 11 12 13 14 15 16 17 18 19 20 
t 5 4 20 39 22 21 7 10 7 4 

Table 3: Safe P-Delta design volume (m3) and thicknesses (mm). 

Volume: 1.968 
El. 1 2 3 4 5 6 7 8 9 10 
t 18 24 29 16 31 8 9 19 9 11 

El. 11 12 13 14 15 16 17 18 19 20 
t 9 4 23 29 17 21 12 15 7 5 

Table 4: Safe buckling/P-Delta design volume (m3) and thicknesses (mm). 

The features of the obtained designs can be interpreted by the relevant Bree diagrams 
plotted in Fig. 2a-f. 

 
Figure 2a: Bree diagram of the standard optimal design. 
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Figure 2b: Bree diagram of the safe buckling optimal design. 

As it is easy to observe, as expected, the optimal structures does not violate in any case the 
imposed safety limit behaviours for the prescribed load combinations, even with same 
margins due to the chosen discrete range of the design variables. However, they exhibit a 
dangerous condition of ratchetting even for cyclic load multipliers lower than the prescribed 
one. By analysing the referenced Bree diagrams it suffices to impose 0 88c .ξ ≥  for 

determining a very dangerous incremental collapse condition. In other papers (see, e.g., [19]) 
the same authors faced the cited problem proposing different approaches in order to improve 
the safety structural behaviour; in the present study such a problem is disregarded focusing 
the attention just to the problem of the element buckling. 

On the other side, it is worth noticing the importance of considering the P-Delta effects, 
especially for the standard design; actually, (Fig. 2e) disregarding such effect the design is 
unable to satisfy the prescribed safety condition on the instantaneous collapse for high 
intensity seismic loads.  

 
Figure 2c: Bree diagram of the safe P-Delta optimal design. 
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Figure 2d: Bree diagram of the safe buckling/P-Delta optimal design. 

 
Figure 2e: Bree diagram of the standard design considering P-Delta effect. 

 
Figure 2f: Bree diagram of the safe buckling design considering P-Delta effect. 
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5 CONCLUSIONS 

The present paper has been devoted to the minimum volume design of plane frames 
constituted by elastic perfectly plastic material and subjected to suitably defined load 
combinations characterized by the simultaneous presence of fixed loads and seismic actions. 
The element thicknesses have been defined as discrete design variables. Three different load 
combinations have been considered: the basic load combination, constituted by the solely 
assigned fixed loads; the serviceability load combination, defined as the combination of 
reduced fixed loads and low seismic actions; the ultimate limit load combination, defined as 
the combination of suitably fixed loads and high intensity seismic actions. Correspondingly, 
three resistance limits have been considered: the purely elastic limit, the elastic shakedown 
limit and the instantaneous collapse limit, besides further special limits on the element 
buckling.  

A four floor plane steel frame has been investigated. At first a standard optimal design 
problem has been solved, namely disregarding the buckling constraints and the P-Delta 
effects. Subsequently, the same problem has been solved but introducing the P-Delta effects 
and/or the constraints on buckling. The features of the obtained structures have been 
interpreted by the related Bree diagrams. 
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