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Abstract. The present paper is devoted to the formulatiora @pecial minimum volume
design problem of elastic perfectly plastic frarsabjected to different combinations of fixed
and seismic loads. The optimal structure must beleastically for fixed loads, shakedown
for serviceability conditions and prevent the imgtneous collapse for suitable combinations
of fixed and seismic loadings. The design variablesrepresented by defined discrete sets.
Moreover, element buckling and P-Delta effects aansidered. Different numerical
applications conclude the paper.

Sommario. Il lavoro che si presenta é rivolto ad una partar@ formulazione del problema

di progetto di minimo volume di telai costituiti adaateriale a comportamento costitutivo
elastico perfettamente plastico e soggetti a dewerembinazioni di carichi fissi ed azioni

sismiche. La struttura € progettata in modo da iesilbn comportamento elastico sotto gli
assegnati carichi fissi, da adattarsi elasticameaiearichi di esercizio e da scongiurare |l

collasso istantaneo per la combinazione di cariitési ed elevati carichi sismici. Si assume
I'ipotesi che le variabili di progetto appartengaraal opportuni insiemi discreti e si tiene

conto della snellezza degli elementi strutturatisiccome degli effetti P-Delta. Si effettuano
diverse applicazioni numeriche.

1 INTRODUCTION

The structural optimization problems are very offermulated as search for the minimum
structural weight which substantially provides thenimum cost to be suffered for the
structure construction.

On the other side, the choice of the design adhiiggi conditions is very complex and

specific of the particular problem which must bernfalated. These conditions are
substantially represented by inequalities idemidyone or more limit behaviour related to the
material and/or to the structure. If reference sdmto elastic plastic structures, the limit
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conditions can characterize: the purely elastidtlbahaviour; the shakedown limit behaviour;
the plastic shakedown and/or of the incrementdhpsé limit behaviours beyond which the
structure suffers an instantaneous collapse.

In addition, further admissibility conditions cam bequested. These conditions depending on
the load condition and on the displacement strattiesponse are related with possible P-
Delta effects and/or with possible buckling of sostreictural element.

In the last decades several efforts have been é@wvot the study of the optimal design of
structures under quasi-static loads as well asrdymactions and the fundamental results are
reported in several books and papers (see, e-§5])1

Aim of the present paper is to propose the fornmabf a discrete variables minimum
volume design problem for elastic perfectly plasframe structures subjected to a
combination of fixed and seismic actions is proplodéhe optimal structure is constrained to
behave in a purely elastic manner for the assigineetl loads, to respect the elastic
shakedown limit in serviceability conditions and geevent the instantaneous collapse for
ultimate seismic load conditions; the P-Delta éfere considered. Furthermore it is required
to prevent the risk of element buckling for all thlkeove described load combinations. The
dynamic response is obtained by utilizing an appate modal technique referring to the
response spectrum defined by the Italian code.r8emamerical applications are effected by
utilizing an harmony search algorithm (see, eX$;17]).

2 THE FRAME STRUCTURE: SCHEME AND ELASTIC RESPONSE

In order to appropriately describe the proposedingt design formulation, some
fundamentals mainly regarding the definition of goappropriate model both for the frame
structure and for the acting loads must be intreduc

Let us consider a classical plane frame with Navier type beam elements amg,

structure nodes, each characterized by three degfdeeedom. The following quantities are
defined: u, frame nodal displacement vector of orddmg3 F, frame nodal force vector

with the same order ofu; d, element nodal displacement vector of ord&Em,; Q,

generalized stress vector of ordéff, evaluated at the extremes of the eleme@s;

perfectly clamped element generalized stress vactalogous taQ .
The static linear elastic analysis problem forglane frame is given as follows:

d=Cu (1a)
Q=Dd+Q (1b)
CQ=F (1c)

where C is the compatibility matrix with order [, x [B,, its transposeC the equilibrium

matrix, and D the frame internal stiffness matrix with ordéfm, x 6[h, . The solution to
problem (1) is given by:

u=KF’ (2a)

Q=DCu+Q =DCK™'F +@ (2b)

In equations (2)K =CDC is the frame external square stiffness matrix ofep
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30y, x30h, andF =F -CQ is the equivalent nodal force vector. Making refere to the

seismic actions, let us consider the relevant frasa flexural plane frame just subjected to
an horizontal ground acceleratiag (t), where the masses are concentrated at each riogle. T

structure is modelled as a Multi-Degree-Of-Freed@wdDOF) one and the dynamic
equilibrium equations can be written in the follogiform:
Mi(t)+Bu(t)+Ku(t)=f(t), ®3)

being f (t)=-Mra,(t), M and B mass and damping matrices andhe influence vector.

If the interest is focused only to the case of Uattiy dynamic effect, it is possible to operate
a partition and reordering of the above describedrices and vectors and to write the free
vibration equations as:

olenlle Gk e

where u, is the vector collecting the structure node hariab displacements and, the

vertical displacements and the rotations of theeso&quation (4) can be usefully rewritten in
the following form:

My Gy (t) + Ky ug (1) + Ky b, (t) = £ (t), (5a)
Kqt (1) + K, u (t)=0. (5b)
The solution of the equation (5b) is given by:
u, (t) =-K, 'Ky y (t). (6)
Substituting equation (6) into equation (5a) ibitained:
My G (1) + Ko ug (t) = £ (1), ()

which represents the condensed equation of motion ffee vibration and where
K. =K, -K,K, K, is the condensed stiffness matrix.

Equation (7) can be solved with a classical mo@gahnique according to the initial
conditionsu, (0) =0, U, (0) =0. The dynamic characteristics of the structuralavésur are

identified in terms of natural frequencies as wasl damping coefficients. The following
coordinate transformation is adopted:

u (t) = @z(t) (8)
being z(t) the modal displacement vector add the so-called modal matrix, normalized

with respect to the mass matrix and whose columeshe eigenvectors of the undamped
structure, given by the solution to the followirigenproblem:

KM, ®=dQ? (9a)
OM, D= (9b)
DK D =Q? (9c)

In equations (9a,c), besides the already known sisnlb represents the identity matrix
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while 27 is a diagonal matrix listing the square of theurstfrequencies of the structure.
Once the modal matrix@ has been determined, the structure can be defase@

classically-damped one b C, @ = = is a diagonal matrix whose typical non zero elemen

—_ . . . th . th .
Z; Is equal t02{; w;, being w; and ¢; the j™ natural frequency and th¢" damping

coefficient, respectively. The equation of motiarthe modal space can be written as:
2(t)+ = z(t) +@%z(t) = g(t) (10)

where g(t) = &f, (t).

The solution of the decoupled system of equatidf® {ogether with the corresponding
initial conditions provides the complete structuredsponse in terms of horizontal
displacements in the modal space. Once these despénts are known the corresponding
ones in the nodal space are obtained by meansuztieq (8), the remaining ones being
determined by means of equation (6).

Now, according with the guidelines of the most iin&ional codes, and in particular with
the ltalian one, seismic loadings have to be evetuéor two different main conditions: the
serviceability conditions and the exceptional (higtensity) one. Therefore, we now assume
that the actions are represented by three diffeappropriate combinations of the above
referred loads each of which related to differemtitl conditions. The first combination is

characterized by the presence of the fixed Ioléﬁsthe second combination is defined as the
superimposition of appropriate reduced fixed IoEdﬁ and low seismic actions related to the
response spectrurﬁdS (serviceability conditions); the third combinatian characterized by
the superimposition oFODe and high intensity seismic actions related tordsponse spectrum
S} (ultimate conditions).

In the above defined combination,, is a special combination of gravitational loads as

prescribed by the referenced codsf and S('j are the response spectra related to

serviceability and instantaneous collapse conditioespectively.
Clearly, since the design problem under investigeis a minimum volume search one, the

structural geometry is not definitely known a pricfherefore, let the typical™ element
geometry be fully described by the components of the vectdy (v=1, 2,...,r5) so that

f=[f.f

.fnb] represents the, x m supervector collecting all the design variables..

3 THE OPTIMAL DESIGN PROBLEM

Let us consider the plane frame structure as almmarribed constituted by elastic
perfectly plastic material. Let it be subjected ficed loads and perfect cyclic dynamic
(seismic) loads identifying three different loadnmdmnations as previously described. The
structure is required to remain elastic when nersa actions occur, to exhibit a shakedown
behaviour in serviceability conditions and to pretvihe instantaneous collapse for high level
seismic loadings.

Furthermore, dealing with structures constitutecsleynder elements, the risk of buckling
as well as the P-Delta effects are considered.
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In order to take into account the so-called P-Deftacts the bending moments acting on
the structural nodes must be increased by the bgreffect produced by the axial forces
acting on the pillars times the drifts at eachesgoiFurthermore, an approximate approach is
utilized in order to account the buckling effecds[18]).

Therefore, following all the previous statementd aamarks, the minimum volume design
problem formulation can be written as follows:

minV (17a)
(te o 05 ) 0 ' ¥
t 0T, (k=12,....,5x 1) (17b)
Q, =DCu,+Qy, Ku,-F4'=0, (17¢)
& M,7S(T,
uth:¢j i tth ( J)' QjS=DCujS, Qf:\/zjzkpkj Qngng' (17d)
J
&M, (T
utlj =&, j tth ( J)' QJ! = DCu}, sz :\/zjzkpkj Qlddjz , (17e)
]
9" =NG,(Q, +Q(()PA))— R<0, (17f)

+(-1) NG p(QS +Q¥ F"‘)) ~SYS-R<0, YS20, (179)

o =NG, (Q0€+Qggﬁ>)+(-1)‘ Nép(Q' +Q'(PA))—SY0'i—Rs0, Yy 20, (17h)
E

9g =G (Qo +Q(()P")) —ﬁ <0, (17)
i =6 (@ i) +(-1) 6, (0 Q1™ - <o, a7
ol =6 (Qu +Ql2?)#(-1f 64 (@' +Q™) - <o, ar

In equations (17b)t, (k:1,2, ...... NS n) are all the design variables defined in the

;
related discrete domaing . In equations (17c,d,ed, and Q,, uf = E‘utjS -K 'K, Lﬂ

r
;
andQ?, u| = E‘u['j ~K Ky Y ‘ andQ] are the purely elastic response to the assigried fu

fixed loads, to the serviceability seismic loadsted to thej™ structural mode, to the high

intensity seismic loads related to tH& structural mode, respectively, in terms of stroetu

node displacements and element node generalizeslsett, being E an appropriate matrix
correctly reordering the node displacements.

In equations (17f,g,hp", (pis and qoil are the plastic potential vectors related to tinely
elastic limit (apexE), to the elastic shakedown limit (ap8xand to the instantaneous collapse
limit (apexl), respectively.YOS and YO'i are the fictitious plastic activation intensitycters
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related to the elastic shakedown limit and to thgeanding instantaneous collapse. In
addition: N is the matrix of the external normals to the eadbmain; G, is an appropriate

equilibrium matrix which applied to element nodengelized stresses provides the same

stresses acting upon the element plastic no@épﬁ;) is the vector collecting the element node
generalized stresses response related to the B-€fdtt considering acting just the full fixed

loads; Q. =0.8Q,is the elastic stress response vector to reduzed foads aan((,EA) is the
analogous ofQ{™ but related to the reduced fixed load®™™ and Q'®? are the

analogous on((,PA) but related to seismic serviceability conditiomsl ehigh level seismic
loads, respectively=S is a time independent symmetric matrix which tfamas plastic
activation intensities into plastic potentials aRd is the relevant plastic resistance vector.
Furthermore, equations (17i,j,k) represent the aditility conditions with respect to the
buckling of the pillars related to the three ddsediload combinations3,, is a condensation

matrix able to extract just the axial stress of giilars; R, ; =1.265El,,; / H? is the critical

load related to the ith pillarp is an appropriate safety factor (see [18]). Prob({&7) is a

quite wide one and it can be utilized for differepecial applications. Actually, disregarding
constraints (17i,j,k) and neglecting the termsc#d by the P-Delta effect a standard optimal
design is searched, namely a minimum volume onleowttany constraint accounting for the
slenderness of the elements.

4 NUMERICAL APPLICATIONS

The optimal design of the plane steel frames ploiteFig. 1a has been obtained referring
to the formulation previously proposed. At firdietoptimal design problem (17) has been
solved searching for the standard optimal structlihee frame is constituted by rectangular
box cross section elements (Fig. 1b) with=200 mm and h=400 mm, and constant

thickness t variable in T{4,5,...40mn}. Furthermore, L, =600cm, L, =400cm and

H =600 c, Young modulusE =21 MN/cn?, yield stress, = 23.5 kN/ cnf .

Two rigid perfectly plastic hinges are located s extremes of the elements, considered
to be elastic, and an additional hinge is locatethe middle point of the longer beams (Fig.
1c). The interaction between bending mombhtand axial forceN has been taken into
account. In Fig. 1d the dimensionless rigid plastonain of the typical plastic hinge is
plotted in the plane N/Ny,M/My), being N, and M, the yield generalized stress

corresponding toN and M , respectively. The structure is subjected to adixiniformly
distributed vertical loadg, =50 kN/m and to seismic actions. We assume that the seismic
masses located in the relevant structure nodescara for each floorm, =12.23kNE /n,

m, =20.39 kNCE /m, m; =8.15 kNC¥E /mr(Fig. 1a). The response spectra for serviceability

conditions (up-crossing probability in the lifetin@1%) and instantaneous collapse (up-
crossing probability in the lifetime 5%) are thas®responding to Palermo, with a solil type
B, life time 100 years and class IV. An harmonyrekalgorithm has been utilized [16-17].

The obtained results are reported in Table 1.
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Figure 1: Four floor flexural steel frame: a) gedipand load conditions;
b) typical rectangular box cross section of thenglets;
¢) structural scheme of the relevant beams;
d) rigid plastic domain of the typical plastic hing
Volume: 1.778
El. 1 2 3 4 5 6 7 8 9 10
t 11 30 20 9 21 14 8 13 9 5
El. 11 12 13 14 15 16 17 18 19 20
t 10 4 18 39 21 20 15 10 5 7

Table 1: Standard design volume®(rand thicknesses (mm).

The same frame plotted in Fig. 1 has been studietaking appropriately into account the
element slenderness. In particular, the minimunuwa optimal design has been searched by
considering alternatively element buckling£1.5), P-Delta effects and both. The results are
reported in Tables 2, 3 and 4.
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Volume: 1.933
El. 1 2 3 4 5 6 7 8 9 10
t 40 23 11 10 23 16 11 13 6 9
El. 11 12 13 14 15 16 17 18 19 20
t 9 4 36 28 13 24 19 7 5 4

Table 2: Safe buckling design volume®frand thicknesses (mm).

Volume: 1.833
El. 1 2 3 4 5 6 7 8 9 10
t 9 33 25 14 23 10 6 15 11 9
El. 11 12 13 14 15 16 17 18 19 20
t 5 4 20 39 22 21 7 10 7 4

Table 3: Safe P-Delta design volume®(mnd thicknesses (mm).

Volume: 1.968
El. 1 2 3 4 5 6 7 8 9 10
t 18 24 29 16 31 8 9 19 9 11
El. 11 12 13 14 15 16 17 18 19 20
t 9 4 23 29 17 21 12 15 7 5

Table 4: Safe buckling/P-Delta design volumé)(and thicknesses (mm).

The features of the obtained designs can be imEgrby the relevant Bree diagrams
plotted in Fig. 2a-f.

1.0
0.8 A
0.6

0.4 A

0.0

0.0 10 20 3.0 40 50 6.0
Figure 2a: Bree diagram of the standard optimades
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Figure 2b: Bree diagram of the safe buckling optidesign.

As it is easy to observe, as expected, the opttnattures does not violate in any case the
imposed safety limit behaviours for the prescridedd combinations, even with same
margins due to the chosen discrete range of thigrdesriables. However, they exhibit a
dangerous condition of ratchetting even for cytdiad multipliers lower than the prescribed
one. By analysing the referenced Bree diagramsuitices to impose &, >0.88 for

determining a very dangerous incremental collaps@lition. In other papers (see, e.g., [19])
the same authors faced the cited problem propasifeyent approaches in order to improve
the safety structural behaviour; in the presentlystsuch a problem is disregarded focusing
the attention just to the problem of the elemermkbag.

On the other side, it is worth noticing the impada of considering the P-Delta effects,
especially for the standard design; actually, () disregarding such effect the design is
unable to satisfy the prescribed safety conditiontle instantaneous collapse for high
intensity seismic loads.

0.8 -
0.6 -

0.4 -

0.0

0.0 1.0 20 30 40 30

Figure 2c: Bree diagram of the safe P-Delta optidesign.

Meccanica dei Materiali e delle Strutture | 4 (2014), 1, PP. 1-12 9



S. Benfratello, L. Palizzolo e P. Tabbuso

Figure 2e:

Figure 2f: Bree diagram of the safe buckling designsidering P-Delta effect.
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Bree diagram of the standard designiderisg P-Delta effect.
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5 CONCLUSIONS

The present paper has been devoted to the minimplome design of plane frames
constituted by elastic perfectly plastic materiad asubjected to suitably defined load
combinations characterized by the simultaneousepis of fixed loads and seismic actions.
The element thicknesses have been defined as istgsign variables. Three different load
combinations have been considered: the basic loatbination, constituted by the solely
assigned fixed loads; the serviceability load comabon, defined as the combination of
reduced fixed loads and low seismic actions; thienate limit load combination, defined as
the combination of suitably fixed loads and higtemnsity seismic actions. Correspondingly,
three resistance limits have been considered: tinelypelastic limit, the elastic shakedown
limit and the instantaneous collapse limit, besifi@sher special limits on the element
buckling.

A four floor plane steel frame has been investidatt first a standard optimal design
problem has been solved, namely disregarding thekliong constraints and the P-Delta
effects. Subsequently, the same problem has bdeadsbut introducing the P-Delta effects
and/or the constraints on buckling. The featurestha obtained structures have been
interpreted by the related Bree diagrams.
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