

New trends and research perspectives towards a more sustainable environment

Palermo 14 Marzo 2014

Energy saving strategies for wastewater treatment: PRIN 2009 project

Michele Torregrossa

PRIN 2009:

"Microbiological, chemical, physical and kinetical characterisation of biomasses in wastewater treatment plant using Membrane Bioreactor (MBR) units, aimed at simulating removal processes and optimising plant management and exercise."

Universities of Naples, Cassino, Palermo and CRN-IRSA (Roma)

Topic developed by the research unit of the University of Palermo

"Experimental analysis on MBR systems to study and to realize a model of fouling including the physical and microbiological features of sludge and the operational conditions that influence this phenomenon."

Configuration of experimental pilot WWTP :

Alternating anoxic/aerobic MBR for nitrogen removal

ADVANTAGES OF A PROCESS WITH ALTERNATING PHASES:

- Energy saving
- Effective removal of nitrogen
- Reduction of sludge production
- Partial biological reduction of phosphorus
- the process does not require recirculation of mixed liquor
- the control of the aerobic phase reduces the supply of air to the specific needs of nitrification
- the control of the denitrification phase optimizes the consumption of nitrates

Conventional pre-denitrification/nitrification

Alternating nitrification/denitrification

Alternating nitrification/denitrification

Alternating nitrification/denitrification

Italian WWTP operating with alternating cycles (at 2011):

Italian WWTP with alternating cycles (at 2011-2012):

Impianto	Dimensione	STATO	
San Giorgio in Nogaro (UD)	AE 700.000	Funzione 2010	
San Benedetto del Tronto (AP)	AE 180.000	Funzione Maggio 2011	
Grottammare	AE 30,000	Funzione Giugno 2011	
Comacchio (FE)	AE 180.000	Funzione Giugno 2011	
Pisticci (MT)	AE 55.000	Funzione 2011	Source: P. Battistoni (2011).
Udine (UD)	AE 200.000	Gara	<i>Il processo a cicli alternati</i> Udine 14 Giugno
Biferno (CB)	AE 200.000	2012	
Rovereto (RO)	AE 100.000	Funzione 2011	
Trento Sud (TN)	AE 100.000*	Funzione 2011	
Trento Nord (TN)	AE 120.000*	Funzione 2011	
Carbonera (TV)	AE 60.000	Funzione 2012	

ADVANTAGES OF A PROCESS WITH ALTERNATING PHASES:

- Energy saving
- Effective removal of nitrogen
- Reduction of sludge production
- Partial biological reduction of phosphorus

ADVANTAGES OF A PROCESS SYSTEMS ALTERNATING

- the process does not require recirculation of mixed liquor
- the control of the aerobic phase reduces the supply of air to the specific needs of nitrification
- the control of the denitrification phase optimizes the consumption of nitrates

Examples of results obtained in actual wwtp:

o

(IDas)

Energy saving

Examples of results obtained in actual wwtp:

Examples of results obtained in actual wwtp:

Reduction of excess sludge production

Topic developed by the research unit of the University of Palermo:

"Experimental analysis on MBR systems to study and to realize a model of fouling including the physical and microbiological features of sludge and the operational conditions that influence this phenomenon."

Configuration of pilot WWTP :

Alternating anoxic/aerobic MBR for nitrogen removal

Pilot WWTP : operating condition and features

Parametro	U.M.	Perio	do I ((50/60)	Period	ło II (6	0/120)	Period	o III (8	30/100)	Perio	do IV (30/60)
		Max	Min	Media	Max	Min	Media	Max	Min	Media	Max	Min	Media
Q in	l/h	18	15	17	35	29	32	32	28	29	30	26	28
Q r	l/h	150	97	126	145	42	128	140	58	121	140	122	137
MLSS	mg/l	5502	4700	5020	6588	1318	3574	6978	5234	6093	5712	5123	5304
MLSSV	mg/l	3313	2906	3122	3313	2906	3122	4776	3785	4368	4254	3359	3857
$C_{\rm F}$	Kg BOD ₅ /(Kg SST* giorno)	0,06	0,01	0,02	0,30	0,03	0,11	0,12	0,02	0,06	0,06	0,04	0,05
HRT	h	33	28	30	17	14	16	18	16	17	19	17	18
T _{bioreattore}	°C	14,80	13,90	14,27	17,43	12,90	15,23	23,90	19,40	21,60	26,65	22,60	24,70

Pilot WWTP control:

Pilot WWTP

Aim of the research:

to study possible factors of criticality due to the alternation of phases.

Four experimental peridods:

Period	Days	Cycle duration [h]	Aerobic/Anoxic Time [min/min]	Aerated fraction
I	28	2	60/60	0.50
II	67	3	60/120	0.33
III	46	3	80/100	0.44
IV	14	1.5	30/60	0.33

EPS and SPM production:

EPS and SPM production:

EPS and SPM production:

b) SMP producted in a cycle

Conclusion:

Literature data show that an high SMP concentration in the mixed liquor leads to an increase of fouling rate.

Data obtained seem to confirm that:

- alternating cycles process can be optimized increasing the anoxic phase duration;
- during the anoxic phase the SMP production increases.
- This fact seems to provide a worrying factor (disadvantage) in the application of these systems!
- Indeed, this influence has to be balanced with the several advantages of alternating cycles process in terms of energy saving.

Our research team is processing a lot of collected data, especially within individual cycles monitored in order to reach a determination in this regard.

Thanks for your attention

Michele Torregrossa

Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali UNIVERSITÀ DI PALERMO michele.torregrossa@unipa.it

