Water and energy

How energy is used in water cycle operations How water is used in energy production

Università Degli Studi di Palermo, 14 March 2014

Content

- Setting the scene
- Energy in water operations
- Water in energy operations
 - Hydraulic fracturing
 - Cooling thermal power plants
 - Hydropower
- Out of the waterbox

France 2003 – the hot summer

"Nuclear plants forced to cut back were partly responsible for the deaths of over 10,000 people"

Nuclear capacity reduced 7-15% during 5 weeks doe to lack of cooling water

Summer 2012 in USA – worst drought since the 1950s - 80% of agricultural land was affected.

Price of corn soared

Corn for ethanol or for food?

World Energy Outlook 2012

International Energy Agency (IEA)

- The water need for energy production will be increasingly important
- 15% of the water use is related to energy production (2010)
- 55-60% of the water use for energy is related to coal
- Water availability a limiting factor for electric power and for biofuel, for example in China, USA, Iraq, India and South Africa

Energy for the urban water cycle

1-3% of a city's energy demand is used to produce, treat & transport water.

15-20% to USE the water

Source: General Electric

Energy - treating impaired water

Requires more advanced technology and more energy

Reused, brackish, sea water

Water and Energy – inextricably linked

Demand for more energy

Demand for more water

Demand for more energy

Content

- Setting the scene
- Energy in water operations
- Water in energy operations
 - Hydraulic fracturing
 - Cooling thermal power plants
 - Hydropower
- Out of the waterbox

Energy cost to produce cold water

Surface water	kWh / m³
	0.25 - 3
Recycled water Desalination Bottled water	1 - 6
Desalination	4 - 8
Bottled water	1000 - 4000

Swedish averages

Water use

> 50

Pumping sewage

1.5 - 4.5 - 40

kWh / kg BOD

0.06

Water distribution

0.22

Drinking water treatment

 kWh/m^3

0.25-0.5

0.24

Pumping to waterworks

Wastewater treatment

Source: Lingsten et al. 2008

Swedish Water

Clean Water Requires Energy!

- Pumping
 - Having efficient pumps
 for adequate flows
 - Operating at dynamically changing flows and pressures
- Aeration in wastewater treatment
 - Adequate compressors
 - Controlling the air flow for variable loads

Increase efficiency!

Minimize air flow!

Pumping from source to waterworks

Wastewater treatment Sweden

Source: Lingsten et al. 2008

Swedish Water

Content

- Setting the scene
- Energy in water operations
- Water in energy operations
 - Hydraulic fracturing
 - Cooling thermal power plants
 - Hydropower
- Out of the waterbox

Water consumption per liter or kg

Source: World Energy Council, 2010

Fracking facts

- The fracking fluid
 - 80% water
 - 19% proppant natural quartz + man made ceramics
 - 0.5% chemicals additives (many toxic) to inhibit bacterial growth, minimize friction, increase viscosity
- Volumes (during a life time of a well)
 - Up to 8000 m³ water
 - Up to 2000 tons of proppant
 - 50+ m³ (or 300+ barrels) of chemicals

Risks in fracking

Water contamination:

- accidental spills during truck transportation
- leakages through cracked or corroded cement casing of the wells
- fugitive gas through the rock fractures

Wastewater ("produced water") - serious risks:

20-40% will be returned back to the surface

Bringing

- chemicals, traces of oil-laced drilling mud,
- · iron, chromium, salt,
- radioactive materials including Radium 226

Water <u>withdrawal</u> - once-through cooling

- Nuclear power plants
 - Typical temp. increase USA 16.5°C (30°F)
 - 1000 MWe requires 33 m³/s for $\Delta T=15^{\circ}C$
 - Rule of thumb for 1000 MWe: $25 43 \text{ m}^3/\text{s}$
- Coal fired plants
 - Typical temp. increase USA 9.5°C (17°F)
 - 1000 MWe requires 50 m³/s for $\Delta T=10^{\circ}$ C

Of the 33 m³/s ~0.5 m³/s are consumed (evaporated)

In Sweden we use some 150 liter/day/person

The evaporated cooling water could supply water for some 300 000 people

Cooling system tradeoffs

	Water with- drawal	Water consump -tion	Capital cost	Plant effi- ciency	Ecol- ogical impact
Once- through	80-200	0.8-1.2	good	good	Down- stream temp
Evapo- rative	1.2-2.4	1.2-2.0	ok	good	ok
Dry (direct air)	good	good	3-4 times wet cool	Up to 25% loss	good
to the same of the					

University Palermo 14 March 2014

Hydropower operation

No other energy source, thermal or renewable, can start up or change output as quickly as hydro in response to load demands – or can store energy on the same level as hydro to meet upcoming demand

Potentially sustainable

Large dams – impacts to consider 1

Flooded area

- Persons requiring resettlement
 - Number of peoples displaced/MW
- Cultural property affected
- Biomass flooded
- Critical natural habitats affected
- Floating aquatic vegetation

Large dams – impacts to consider 2

Water loss due to evaporation

- Temperature
- · Reservoir surface area
 - Hectares per megawatt (ha/MW)
 - Power per area unit (MW/km²)

Industrial Electrical Engineering and Automation

Evaporation

	ha/MW	Evaporation mm/year	Evaporation Gm ³ /year	liters/kWh
Akosombo Ghana	720	2185	19	3000
Sobradinho, Brazil	400	2841	12	1430
Bayano, Panama	233	2156	0.75	1370
Itezhi Tezhi, Zambia	62	2572	0.95	338
Robert Bourossa, Canada	36	586	1.7	30
San Carlos, Colombia	0.26	1726	0.01	1

Source: Mekonnen & Hoekstra 2012

Range of evaporation

Locations	Range liters/kWh	Average liters/kWh	Reference
Selected 35 plants globally	1-3000	240	Mekonnen- Hoekstra 2012
New Zealand	3 – 115		Herath <i>et al.</i> 2011
California	0.04 - 200	5.4	Gleick (1993) DOE (2006)
USA, Switzerland, Tanzania	1 – 610		Pfister et al. 2011
USA average		17	Atlantic Council 2011
Estimated global average		80	Gerbens-Leenes 2009

ndustrial Electrical Engineering and Automation

12 VIII A PARTY

Water use in electrical generation

Water use in electrical generation

Large dams – impacts to consider 3

Reservoir sedimentation

- Useful reservoir life before "dead storage" is filled
- Reduction in sedimentation reaching the mouth
- A growing risk of landslides and reservoir induced seismicity

Large dams – impacts to consider 4

Water quality

- Temperature increase
- Public health water related diseases
- Fish species diversity and endemism
- Greenhouse gases
- Deterioration of water quality

Content

- Setting the scene
- Energy in water operations
- Water in energy operations
 - Hydraulic fracturing
 - Cooling thermal power plants
- Out of the waterbox

Saving water

- Save energy
- Fracking methods need to be transparent
- Increase wind & solar to reduce thermoelectric withdrawal and consumtion
- Eliminate once-through cooling
 - (will decrease withdrawal but may not decrease consumption)
- Review operation of hydro dams
- What would happen if the water will have a cost ("opportunity cost", "society cost")?

More details in...

gustaf.olsson@iea.lth.se *Thank you!*

