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Abstract. This paper aims to investigate the effects of the change of temperature in the 
fractional constitutive law of viscoelastic material. It is shown that the well known William 
Landell and Ferry (WLF) (or the Harrenius) principle is not valid for real fractional 
viscoelastic materials unless the order of fractional operators is indipendent on the 
temperature. With the aid of some experimental date obtained by performing Creep test at 
different temperature the order of the fractional operators is not constant and then they may 
be considered thermoreologically simple. This modification of the WLF is here proposed in 
order to fully investigate the effects of the temperature in the fractional constitutive law.  

1  INTRODUCTION

Creep and Relaxation function of real materials are well fitted by power law [1]. As a 
consequence , in the linear hypothesis, the Boltzmann superposition principle holds and the 
convolution integrals are the so called fractional operators [3,4,5]. Experimental evidence 
shows that the parameters are very sensitive to the change of temperature. As this effect will 
be taken into account, the various parameters will depend on the temperature and then 
implicitly on the time if the temperature is time dependent is it happens in many engineering 
applications. Many papers have been devoted to this subject [7,8,10,13,14]. 
Thermoviscoelastic theory has been also investigated in many papers Lord and Shulman 
Dhaliwal and Sherif [15,16]. 
How stated before the parameters strictly depend on the temperature and in literature many 
studies have been devoted to this subject. In particular the so-called time temperature 
superposition is used. Such a principle states that as the temperature increase (or decrease) as 
the temporal scale is properly modified the Creep function will remain the same at the various 
temperature. This principle strictly holds only for thermoreologically simple materials. This 
principle however does not holds true for real materials. This is due to the fact that Creep 
and/or relaxation function are Power-law [1] rather than exponential like in the classical 
models of viscoelasticity (Kelvin-Voigt, Maxwell, Zener, Burger, ...). This produce two 
effects: first of all the constitutive laws are ruled by fractional operators (Riemann-Liouville 
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and Caputo’s fractional derivative) ruther than classical derivatives and integrals; the second 
effect is that the parameters of the fractional viscoelastic model are strongly influenced by the 
temperature. It follows that in the case in which the temperature depends on the time (day- 
night, summer-winter) also the parameters depend on the time and the Creep and/or relaxation 
function will depend not only on the stress (or the strain) but also on the temperature that in 
turn depend on the time. In this paper it is shown that the TTS for the fractional model is still 
applicable only if the order of fractional derivative (or integral) is indipendent on the 
temperature. That is the fractional model thermoreologically simple only if the order of the 
fractional operator does not depends on the temperature. Two real materials have been taken 
into account the Polypropylene and Ethylene Vinyl Acetate (EVA). Creep test are such a 
materials performed at different temperatures show that both are not thermoreologically 
simple because the order of fractional operators are not constants. In order to work with such 
a material a modified William Landell and Ferry law is proposed that is not only the temporal 
scale is modified but also the shift on the order of fractional operators is examined. 

2  PRELIMINARIES IN FRACTIONAL VISCOELASTICITY

Nutting [1], on the basis of a wide experimental campaign observed that real materials like 
rubber, polymers steal ..., states that the for an assigned stress history 0( ) = ( )t U tσ σ  ( ( )U t

being the unit step function) the corrisponding strain is given in the form: 

0( ) = ;( , );0 1t at aα µε σ µ α+∈ ≤ ≤R  (1) 

with a , α  and µ  characteristic parameters depending on the material at hands. In particular 

if 0 = 1σ  eq.(1) becomes the so called Creep function in the following denoted (t)C . The 

conseguence of eq.(1) is that as we assume that 0σ  is small, then the creep function assumes 

the form: 

1
(t)= t ; 0 1

C (1 )
α

α

α
α

≤ ≤
Γ +

C  (2) 

where ( )Γ ⋅  is the Euler Gamma function and Cα  is an anomalous coefficient (Pasα ). As soon

as the Creep function is assumed in the form expressed in eq.(2) the Boltzmann superposition 
principle, for an assigned stress hystory ( )tσ , is given as: 

0

1
( ) = ( )( )

(1 )

t
t t d

C
α

α

ε σ τ τ τ
α

−
Γ + ∫ &  (3) 

Such an equation is valid if the system is quiescent at = 0t  ( (0) = 0ε ) and (0) = 0σ . If 
(0) 0σ ≠  we have to add at the r.h.s of eq.(3) the term (t) (0).σC  Integration by part eq.(3) 

leads to: 

1

0
( ) = ( )( )t C I tα

αε σ−
+ (4) 
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where the symbol 
0

( )( )I tα σ+  means Riemann– Liouville fractional integral, that is:

1

0 0

1
( )( ) = ( ) ( )

( )

t
I f t t f dα ατ τ τ

α
−

+ −
Γ ∫ (5) 

Let us now denote as ( )tR  the relaxation function that is the stress hystory to an imposed 
strain history of the kind ( ) = ( )t U tε . Since the following general law of the viscoelasticity 
holds true in Laplace domain (Flugge) 

2ˆ ˆ(s) (s)=1/sC R (6) 

where ˆ (s)C  and ˆ (s)R  are the Laplace transform of (t)C  and (t)R , respectively and s is the 
(complex) parameter of the Laplace operator. From eq.(6), after some algebra, it is recognised 
that (t)R , corresponding to the creep function in eq.(2) is given as: 

( ) =
(1 )

C
t t αα

α
−

Γ −
R (7) 

It follows that the Boltzmann superposition principle gives the stress history corresponding to 
a general strain history ( )tε  as: 

0
( ) = ( )( )

(1 )

tC
t t dαασ ε τ τ τ

α
−−

Γ − ∫ & (8) 

or in equivalent form: 

0
( ) = ( )( )Ct C D tα

ασ ε+ (9) 

where the symbol 
0

( )( )C D tα ε+  is the so called Caputo’s fractional derivative defined as:

0 0

1
( )( ) = ( ) ( ) ; 0 1

(1 )

t

C D f t t f dα ατ τ τ α
α

−
+ − ≤ ≤

Γ − ∫ &  (10) 

The constitutive law expressed in eq.(9) is valid provided (0) = 0ε . In this case the Caputo’s 
fractional derivative coalesces with the Riemann– Liouville fractional derivative. 
Eq.(4) and (9) represent the constitutive laws of fractional viscoelasticity. At this stage some 
remarks are necessary: i) As = 0α  the elastic law is recovered and for =1α  the Newton-
Petrof law is recovered, it follows that the intermediate value 0 < <1α  gives an intermediate 
behaviour of the two extreme (idealized) cases; ii) for a quiescent system (at = 0t ) the 
operators (5) and (10) are inverse each another; iii) operators (5) and (10) are linear ones and 
for such operators all the rules of classical derivative and integral hold true (linearity, 
integration by parts, Leibnitz rule, ...), moreover in Fourier and in Laplace domain they 
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exactly behaves like for the classical derivative and integrals; iv) these operators are valid for 
α +∈ R  or even for α ∈C (with ( ) > 0Reα ).
In the next section the effects of the temperature on the fractional constitutive law is
presented.

3  FRACTIONAL ORDER THERMOVISCOELASTICITY

In this section we assume that the body is hysotropic, and the component of stress σ  and the 
corresponding strain are composed by only one component as it happens for the purely 
tangential stress or purely volumetric component. Such an example for the purely tangential 
stress τ  eq.(4) is rewritten in the form 1

0
( ) = ( )( )t G I tα

αγ τ−
+ , γ  being the tangential strain

corresponding to the tangential stress τ ; or for the volumetric stress vσ it corresponds to
1

0
= 3 ( )( )v vk I tα

αε σ−
+ and Cα has been assumed as 1Gα

− and 13kα
− , because they are the shear and

the Bulk’s modulus (anomalous) for these two cases. In the following we shall assume the 
general law in eq.(4) and in eq.(9). Now it has been bserved that as the temperature varies, the 
parameters α  and Cα varie that is

= ( ) ; = ( )T C C Tα αα α (11) 

The variation of these coefficients is general very large. Such an example for the water at 
0oT C≤  the liquid phase disappear (glass) and 0 α; , while at > 0oT C  the solid phase 

disappears and 1α ;  (pure Newtonian fluid). 
These variations may be used in order to reduce times of experimental results. Such an 
example for a resin at a temperature of 25oC  we need of 5 hours to determine the 
experimental Creep or Relaxation function, but if we performe the same experiment at 35oC  
we may use a reduced time of order 20 minuts. Another reason to investigate in this field is 
that after many materials commonly used in structural elements like pultruded beams in 
structural engineering or bitumens in the railways engineering suffer of cyclic change of 
temperature (day-night and/or summer-winter) and in these circumstances the evaluation of 
the response to given loads in terms of deformation depend on these changes it follows that 
we have to take into account for these variation, in the equation of motion. Usually empirical 
models have been proposed in literature in order to take into account the effects of the change 
of temperature the so-called shift factor that is valid for the so-called thermoreologically 
simple materials is applied.This principle is formally proposed in the following form: 

0 0( , ) = ( , )t T t TR R  (12) 

That reads: the relaxation function at a given time t  at the temperature T  equals to the 
relaxation function at time 0t  corresponding to a reference temperature 0T . The general form 

of 0t  is: 

0
0 =

T

t
t

a
(13)
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where Ta  is the so-called shift factor. Different expression of the shift factor have been 

proposed in literature. The most popular expression is the William-Landel and Ferry (WLF), 
that is: 

0
1 0

0
2 0

( )
log =

( )T

C T T
a

C T T

−−
+ −

(14) 

where 0
1C  and 0

2C  are coefficients obtanied by best fitting on experimental data. The WLF 

expression is valid for > gT T , being gT  is the glass transition temperature. For < gT T  the 

other model is that proposed by Arrhenius, that is: 

0

1 1
log = ( )a

T

H
a

R T T

∆− −  (15) 

where R  is the universal constant of gasses and aH∆  is the activation energy.

For thermoreologically simple materials the Time Temperature Superposition (TTS) holds 
that basically consists in assuming that the time scale of observation at the given temperature, 
if properly changed, produce identical result of that obtained at a reference experiment by 
changing the temporal scale according to the eq.(13). Now the question is: what are the 
conditions for which a fractional viscoelastic material is thermoreologically simple? 
In order to answer to this fundamental question let us assume that the material is 
thermorologically simple then, according to eq.(12) we may write: 

( )( ) 0 0

0

( ) ( )
=

(1 ( )) (1 ( ))
TTC T C T

t t
T T

ααα α

α α
−−

Γ − Γ −
(16) 

From this equation it is evident that a material is not thermoreologically simple unless 

0( ) = ( ).T Tα α  Unfortunately this is not the case for many real materials, such an example 

from the experimental data in the laboratory of Palermo [8] performed on the propilene for a 
given load (55MPa) and for different temperature (10 ,23 ,37 ,51o o o oC C C C and 65oC ) the 
Creep functions of the material at different temperature are represented in fig.1 
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Fig.1 Creep function at different temperatures (experiments) 

The best fitting determine the parameters Cα and α  for the different temperatures and the

result are depicted in fig(2) and (3), respectively 

Fig.2 Best fitting of ( )C Tα  

Fig.3 Best fitting of ( )Tα
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From figs.(2) and (3) we may states that ( )C Tα  is well suited by the law:

2 3
0 1 2 3( ) =C T C C T C T C Tα + + + (17) 

where: 
6

0 1 2 3= 0.99344, = 0.0438913, = 0.00100136, = 8.15417*10C C C C −− −

2 3
0 1 3( ) = > 0, > 0T A AT AT A T a bα + + + (18) 

where: 
6

0 1 2 3= 0.164219, = 0.00332012, = 0.000173832, = 1.93437*10A A A A −− −
and equation (18) reveals that since ( )Tα  is not a constant the polyvinile is not 
thermoreologically simple. 
Analogous result is found for the Ethylen Vinil acetate (EVA) commonly used for a solar 
cells, glass cover and so-on. A recent study [10] give the result of α  and Cα based by the best

fitting performed at different temperature. 
These results are reported in Table 1 

[oT C] α Cα [ * ]Pa sα

-35 0.22600 814.7 
-28 0.16810 182.7 
-18 0.10150 52.63 

0 0.05566 23.55 
20 0.04227 11.04 
40 0.07417 4.668 
49 0.08634 4.116 
60 0.06542 1.544 
80 0.05117 1.049 
100 0.04179 0.9276 
119 0.03610 0.7965 
139 0.03311 0.8228 

Table 1 result by best fitting based on experimental campaign at different temperatures (result reported in 
[10]) 

From this table is apparent that ( )Tα  may not be considered constant with respect to the 
temperature, so also EVA may not be considered thermoreologically simple materials. 
In the next section a Modified TTS (MTTS) is proposed to define the behavior of materials 
not thermoreologically simple. 

4  MODIFIED TIME TEMPERATURE SUPERPOSITION PRINCIPLE

We introduce two shift factors one for the time Ta  and the other one for the variation of ( )Tα
that will labeled as Tb . Eq.(12) for a thermoreologically simple material read as: 
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0 0( , , ) = ( * , , )Tt T a t Tα αR R  (19) 

for the materials for which α is not constant we propose: 

0 0 0( , , ) = ( * , , * )T Tt T a t T bα αR R  (20) 

It is obvious that this modification reproduce the TTS for the case in which α  is indipendent 
on the temperature ( =1Tb ). 

Such an example for the EVA the coefficient Tb  is plotted in fig.4. The best fitting is 

performed by assuming 0 = 18oT C−  , 0 =α 0,10150 and a third order polynomial of the form
2 3

0 1 2 3=Tb b bT b T b T+ + +  match quite well all the experimental data (dotted line) with the 

value 0 = 0.493646b  , 1 = 0.0147932b −  , 2 = 0.000764126b , 6
3 = 6.37002*10b −− . 

Fig.4 Tb for different value of the temperature; continuos line best fitting 

Once Tb  is obtained the value of the shift factor for the temperature may be easily found. In 

fig.(5) the log Ta  is plotted versus T  for the EVA. In dotted line are reported the log Ta  and 

in solid line. The result of the best fitting with a polynomial of third order 
log Ta = 2 3

0 1 2 3a a T a T a T+ + + . For the EVA the coefficient are 0 = 7.40345a  , 1 = 0.435922a  

, 2 = 0.00150735a − , 3 = 0.000109548a − . 
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Fig.5 log Ta for different value of the temperature;

5  CONCLUSION
In this paper the effect of the temperature on the parameters of the fractional constitutive law 
(order : 0 1α α≤ ≤ ) has been investigated. It has been shown that for the fractional model the 
time-temperature shift method may not be applied unless the exponent α of the power law in 
the Creep function is independent on the temperature. It is also shown that from the 
experimental data obtained for polypropylene and on the EVA ath different temperatures the 
order of derivative is not constant. Then a modification of the WLF is proposed by shifting 
both the time and the order α . 
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